| 研究生: |
林正怡 Lim, Zheng-Yi |
|---|---|
| 論文名稱: |
中孔洞碳材於電化學之應用 Application of Mesoporous Carbons in Electrochemistry |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 超級電容器 、中孔洞碳材 |
| 外文關鍵詞: | supercapacitor, mesoporous carbon |
| 相關次數: | 點閱:145 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化矽孔洞材料與碳材因爲具有廣泛的應用性,如作爲吸附劑、固態模板、催化擔體及電極材料,引起許多研究的關注。本論文將討論以中孔洞碳材作爲超級電容的電極材料在電容表現的影響。實驗中以模板拓印法合成具特殊外觀及孔道的中孔洞碳材,以及氧化鋅奈米粒子做為隔板混摻酚醛樹脂合成高孔洞性的碳材。以氧化鋅奈米粒子作爲無機隔板的好處是它可以被鹽酸移除;與必須用氫氟酸才能移除的氧化矽模板相比,氧化鋅奈米粒子的移除較爲安全且對環境的傷害較低。
把所合成的中孔洞碳材與粘著劑均勻混合並且製作成電極,並進行電化學實驗,討論碳材外觀、表面積高低、孔徑大小、孔道長短、碳材自身導電度以及高溫處理碳材對電容行爲的影響。實驗的結果顯示,具有片狀外觀的碳材在電容的表現方面比較好,其中以六角形片狀的碳材在掃描速率為25 mV/s時較佳。如果對結構較差的中孔洞碳材在N2(g)下進行1300 ℃的高溫處理也確實提升了碳材的導電度,進而使碳材在高速掃描 (3000 mV/s) 下有比較方正以及對稱性較好的CV曲綫圖。
此外,將中孔洞碳材以簡單的水熱含浸法和乾式含浸法引入金屬鹽類到碳材中,再利用碳材具有吸收微波生熱以及還原的能力,把金屬鹽類還原成金屬或者金屬氧化物,適當的反應條件下就能生成金屬或金屬氧化物 / 碳複合材料,到目前爲止,已經可以順利的合成Fe、Fe3O4、Ni、NiO、Cu2O、Cu以及Ag / 中孔洞碳材復合材料。而在未來將會以大量處理高科技產業的重金屬廢液為目標,改良現有的方法以便有效地達到重金屬回收的目的。
Porous silica and carbons possesses high surface area, large porosity are of great interest for its extensive applications, such as adsorbents, solid templates, catalytic support and materials for electrode. In this research, the tri-block polymer Pluronic P123 was used as template to synthesize the SBA15 mesoporous silicas in different morphologies through a well control on the synthetic compositions and reaction kinetics (such as temperature, pH value), three different kind of mesoporous silica are obtained. Further study of preparation of the mesoporous carbon using hard template method completely utilizes the advantages and special exterior of the mesoporous silica. On the other hand, instead of mesoporous silica, ZnO can also be used as inorganic template. The advantage of using ZnO is that it can be easily remove by HCl, which is less harmful than HF.
A series of electrochemistry experiments have been taken to verify the effect of carbon morphologies, surface area, pore width, channel length to capacitor performance. The results show that thin film like mesoporous carbons has better performance, among the three types of mesoporous carbon, hexagonal-like carbon possesses most square and symmetry CV curve at scan rate 25 mV/s. Heat treatment is being applied on mesoporous carbon to increase the electric conductivity, and it shows positive result, the symmetry of CV curve is greatly improved.
Porous carbon can also be utilized as solid template for synthesis of metal and metal oxide @ mesoporous carbons. Metal precursors such as Fe3+, Ni2+, Cu2+ and Ag+ were impregnated with porous carbon. Microwave radiation was applied to generate metal and metal oxide @ mesoporous carbons. Carbon is a microwave adsorber; it quickly turns the energy to heat and release to the environment, with this high temperature it is readily to reduce the metal precursors to metal or metal oxide, and finally obtained the metal and metal oxide @ mesoporous carbons composite materials. The goal of this experiment is to find a possible method dealing with the mass heavy metal waste from high-tech factory.
參考資料
1. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
3. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
4. C. G. Wu, T. Bein, Science 1994, 264, 1757
5. C. G. Wu, T. Bein, Science 1994, 266, 1013.
6. C. G. Wu, T. Bein, Chem. Mater. 1994, 266, 1109.
7. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir 1996, 12, 6202.
(b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn. 1996, 2467.
8. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc., Chem. Commun. 1995, 1803.
9. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun. 1995, 1617.
10. A. Sayari, Chem. Mater. 1996, 8, 1840.
11. Neumann, K. Khenkin, Chem. Commun. 1996, 23, 2643.
12. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett. 1994, 39, 63.
13. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem. 1996,100, 9906.
14. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal. 1994, 84, 69.
15. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun. 1995, 2231.
16. W. Wang, S. Xie, W. Zhou, A. Sayari, Chem. Mater. 2004, 16, 1756-1762.
17. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao., Angew. Chem. 2003, 115, 3254.
18. A. E. Garcia-Bennett, S. Williamsin, P. A. Wright and I. J. Shannon., J. Mater. Chem 2002, 12, 3533.
19. A. Vinu, V. Murugesan and M. Hartmann., Chem. Meter. 2003, 15, 1385.
20. H. P. Lin, C. Y Tang and C. Y. Lin., J. Chin. Chem. Soc. 2002, 49, 981.
21. V. Alfredsson and M. W. Anderson., Chem. Mater. 1996, 8, 1141.
22. H. P. Lin and C. Y. Mou, Acc. Chem. Rev. 2002, 35, 927.
23. Q. Huo, D. I. Margolese and G. D. Stucky., Chem. Mater. 1996, 8, 1147.
24. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier., Chem. Mater. 2001, 13, 2247.
25. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky., J. Phys. Chem. B. 2002, 106, 2552.
26. Z. Zhang, Y. Han, S. X. Feng, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei., J. Am. Chem. Soc. 2001, 123, 5014.
27. A. Bhaumik and S. Inagaki., J. Am. Chem. Soc. 2001, 123, 691.
28. Y. Han, S. Wu, Y. Sun, D. Li and S. X. Feng, Chem. Mater. 2002, 14, 1144.
29. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and S. X. Feng, Angew. Chem. Int. Ed. 2001, 7, 1258.
30. Y. Han, S. X. Feng, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin., J. Phys. Chem. B. 2001, 105, 7963
31. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D.Stukey., Chem. Mater. 2002, 12, 2448.
32. A. Walcarius, M. Etienne and B. Lebeau., Chem. Mater. 2003, 15, 2161.
33. T. Yokoi, H. Yoshitake and T. Tatsumi., J. Mater. Chem. 2004, 14, 951.
34. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming., Nature. 2000, 48, 289.
35. E. B. Erlein., Angew. Chem. Int. Ed. 2003, 42, 614.
36. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu., Angew. Chem. Int. Ed. 2003, 42, 413.
37. F. Noll, M. Sumper and N. Hampp., Nano. Lett.2002, 2, 91.
38. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
39. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
40. T. Kyotani, Carbon 2000, 38, 269.
41. J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun. 1998, 2177.
42. M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N. Toyota, Synthetic Metals 2003, 721.
43. H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater. 2003, 15, 2107
44. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater. 1996, 8, 454.
45. W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
46. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
47. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
48. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146, 3639.
49. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater. 2000, 12, 3397.
50. S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392.
51. N. Kröger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
52. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed. 2002, 41, 1543.
53. T. F. Todros, Surfactants, Academic Press: London, 1984.
54. Malcolm P. Stevens, Polymer Chemistry An Introduction, Oxford University Press, New York 1999.
55. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg 1980.
56. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys 1980, 13, 121.
57. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II. 1981, 77, 1264.
58. R. K. Iler, The Chemistry of Silica, John Wiley, New York, 1979.
59. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr. 1986, 352, 3.
60. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky,H. J. Shin and Ryong Ryoo, Nature 2000, 408, 449.
61. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredirckson, B. F. Chemlka, G. D. Stucky, Science 1998, 279, 548.
62. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B 2003, 107, 2205.
63. S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B 2002, 106, 4640.
64. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13, 677.
65. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc. 2000, 122, 10712.
66. S. H. Joo, S.J. Choi, Ilwhan Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature 2001, 412, 169.
67. B. Kim, S.L. Tripp, A. Wei, J. Am. Chem. Soc. 2001, 123, 7955.
68. A. J. Bard, L. R. Faulkner, Electrochemical Method, John Wiley & Sons. Inc. 2001
69. E. A Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, J. Electrochemical. Soc. 1998, 135, 2209.
70. A. J. Appleby, and F. R. Folkes, Fuel Cell Handbook, Van Nostrand Reinhold, New York 1989.
71. Z. Ogumi, T. Kuroe and Z. I. Takehara, J. Electrochem. Soc. 1985, 132, 2601.
72. M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245.
73. J. G. D. Haenen, W. Visscher and E. Barendrecht, Journal Applied Electrochem. 1985, 15, 29-38.
74. A. Burke, J. Power Source 2000, 91, 37.
75. A. B. Fuertes, F. Pico, J. M. Rojo, J. Power Source 2004, 133, 329.
76. D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2008, 47, 373.
77. J. P. Zheng, T. R. Jow, J. Electrochem. Soc. 1995, 142, L6.
78. V. Khomenko, E. Frackowiak, F. Béguin, Electochim. Acta 2005, 50, 2499.
79. E. Frackowiak, Phys. Chem. Chyem. Phys. 2007, 9, 1774.
80. A. H. Jayatissa, P. Samarasekara, and K. Guo, Phys. Status Solidi A 2009, 2, 332.
81. S. T. Shishiyanu, T. S. Shishiyanu, O. I. Lupan, Sensors and Actuators B 2006, 113, 468.
82. B.Wolpert, M. Leitl, A. Pfitzner, V. M. Mirsky, Sensors and Actuators B 2008, 134, 839.
83. W. C. Li, H. L. Bai, J. N. Hsu, S. N. Li, C. C. Chen, Ind. Eng. Chem. Res. 2008, 47, 1501.
84. Y. Kuroda , T. Mori, H. Sugiyama, Y. Uozumi, K. Ikeda, A. Itadani , M. Nagao, J. Colloid and Interface Science 2009, 333, 294.
85. N. Johnson, S. Manchester, L. Sarin, Y. M. Gao, I. Kulaots, R. H. Hurt, Environ. Sci. Technol. 2008, 42, 5772.