| 研究生: |
欒皓丞 Luan, Hao-Cheng |
|---|---|
| 論文名稱: |
飛秒雷射剝離於高熵鋯基金屬玻璃薄膜表面形貌之影響研究 Effect of Femtosecond Laser Ablation on the Surface Morphology of High-entropy Zirconium-based Thin Film Alloy |
| 指導教授: |
洪嘉宏
Hung, Chia-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 鋯基金屬玻璃 、超快飛秒雷射 、雷射誘導週期性結構 、疏水表面 |
| 外文關鍵詞: | Zirconium-based metallic glasses, Ultrafast femtosecond laser, Laser-induced periodic structure (LIPSS), Hydrophobic surfaces |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋯基金屬玻璃(Zr-based metallic glass)有著優異材料特性,經常應用在醫用手術刀、骨科植入物及牙科器械等醫療器械領域。在使用的過程中經常因為水親附在材料表面上而產生細菌並使細菌滋長,因此我們提出使用超快飛秒雷射改質鋯基金屬玻璃表面使其表面從親水變成疏水。首先藉由雷射剝離閥值選擇適合鋯基金屬玻璃材料的雷射參數,以及觀察雷射過後和原始表面的元素變化。藉由不同的雷射能量密度、速度,找出最佳的參數能使金屬玻璃上所形成仿造大自然的疏水結構,並觀察它的表面特性。結果發現在經過速度50 mm/s及雷射能量密度1.09 J/cm2時會產生最完整的雷射誘導周期性結構(LIPSS),LIPSS是最佳的疏水結構,疏水角度從原始表面的73.4∘增加到137.2∘,此時已經接近超疏水範圍。表面粗糙度也從原始的0.02 μm增加到0.73 μm,從研究中可以得知表面粗糙度和疏水性有著正相關,除此之外和表面硬度也有相當的關係,在雷射能量密度1.09 J/cm2硬度卻從679.7 HV降低到546.3 HV。
此外也分析了三種雷射環境介質包含空氣、去離子水及氮氣的表面情況,結果發現在空氣中進行雷射會是最容易剝離鋯基金屬玻璃表面,雷射誘導周期性結構(LIPSS)也較完整。而在去離子水及氮氣環境介質下進行雷射能排除腔室內的氧氣,經過XRD測量,雷射過後的表面均無結晶產生,但接觸角降低至32.9∘、粗糙度也較為平整。研究結果顯示在空氣環境介質下,雷射速度50 mm/s;雷射能量密度控制在1.09 J/cm²時會產生LIPSS疏水性結構。
Zirconium-based metallic glass (Zr-based MG) has excellent material properties and is often used in medical devices. Bacteria are often generated and grow on the surface of the medical scalpels due to the hydrophilic surface in the process of use. In this study, we propose to modify the surface wettability of Zr-based MG from hydrophilic to hydrophobic by a femtosecond (fs) laser under three different ambient condition including air, deionized water, and nitrogen. Zr-based MG is used to fabricate hydrophobic structures on the surface that mimic hierarchical morphology from the natural world, such as lotus leaves. The most complete laser-induced periodic surface structures (LIPSS), the most effective hydrophobic structure, are produced at the velocity of 50 mm/s and laser fluence of 1.09 J/cm2 in ambient condition of air. The hydrophobic water contact angle is increased from the pristine surface of 73.4° to laser-modified surface of 137.2° close to the superhydrophobic range. The surface roughness also increased from 0.02 μm to 0.73 μm. The hardness decreases from 679.7 HV to 546.3 HV. Additionally, the laser ambient condition in deionized water and nitrogen can remove the oxygen from the chamber, and the surface is non-crystallization after the laser by XRD measurement. However, the water contact angle is reduced to 32.9° from 73.4° and the roughness is flatter. The average roughness in the ambient condition of air, deionized water, and nitrogen is 0.33 μm, 0.05 μm, and 0.17 μm, respectively.
[1] H. Kopfermann, R. Ladenburg, Experimental Proof of ‘Negative Dispersion.’, Nature, 122 (1928) 438–439. DOI: org/10.1038/122438a0
[2] W. E. Lamb, J. and R. C. Retherford, Fine structure of the hydrogen atom by a microwave method, Physical review, 72 (1947) 241. DOI: org/10.1103/PhysRev.72.241
[3] A. Kastler, Quelques suggestions concernant la production optique et la d é tection optique d'une in égalité de population des niveaux de quantifigation spatiale des atomes, application à l'expérience de stern et gerlach et à la résonance magnétique, Journal de Physique et Le Radium, 11 (1950) 225-265. DOI: 10.1051/jphysrad:01950001106025500
[4] Laser Processing Market with COVID-19 Impact analysis by Laser Type (Solid Lasers, Liquid Lasers, Gas Lasers), Configuration (Fixed Beam, Moving Beam, Hybrid), Revenue (System Revenue, Laser Revenue), Application, End-user Industry, and Region - Global Forecast to 2025, Laser Processing Market, Markets and Markets (2020)
[5] S. Küper, M. Stuke, Femtosecond uv excimer laser ablation, Applied Physics B, 44 (1987) 199–204. DOI: org/10.1007/BF00692122
[6] C. Momma, B. N Chichkov, S. Note, F. V. Alvensleben, A. Tünnermann, H. Welling, B Wellegehausen, Short-pulse laser ablation of solid targets, Optics Communications, 129 1-2 (1996) 134-142. DOI:org/10.1016/0030-4018(96)00250-7
[7] S. A. Ahmed, M. Mohsin, S. M. Z. Ali, Survey and technological analysis of laser and its defense applications, Defence Technology 17 2 (2021) 583-592. DOI: org/10.1016/j.dt.2020.02.012
[8] K. H. Leitz, B. Redlingshöfer, Y. Reg. A. Ottoss, M. Schmidt. "Metal Ablation with Short and Ultrashort Laser Pulses". Physics Procedia, 12 (2011) 230-238. DOI: org/10.1016/j.phpro.2011.03.128
[9] H. Cao, R. Chriki, S. Bittner, A. A. Friesem, N. Davidson. "Complex lasers with controllable coherence". Nature Reviews Physics 1 (2019) 156-168. DOI: org/10.1038/s42254-018-0010-6
[10] J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, K. Watkins, A review of ultrafast laser materials micromachining, Optics & Laser Technology, 46 (2013) 88-102. DOI: org/10.1016/j.optlastec.2012.06.037
[11] H. Huang, P. Zhang, Yu. Zhishui, L. Shen, H. Shi, Y. Tian, Femtosecond laser-induced transformation mechanism from 1D groove structure to 2D microholes structure on the surface of Zr-based metallic glasses, Optics and Laser Technology, 146 (2022) 107555. DOI: org/10.1016/j.optlastec.2021.107555
[12] M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, L. V. Zhigilei, Fundamentals of ultrafast laser–material interaction. MRS Bull. 41 (2016) 960–968. DOI: org/10.1557/mrs.2016.274
[13] E. Stratakis, A. Ranella, C. Fotakis, Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications, Biomicrofluidics, 5 (2011) 013411. DOI: org/10.1063/1.3553235
[14] X. Liu, D. Du, and G. Mourou, Laser Ablation and Micromachining with Ultrashort Laser Pulses, IEEE Journal of Quantum Electronics, 33 (1997) 1706 – 1716. DOI: 10.1109/3.631270
[15] J. Schroers, Processing of Bulk Metallic Glass, Advanced Materials, 22 (2010) 1566-1597. DOI: org/10.1002/adma.200902776
[16] P. Zhang, H. Yan, P. Xu, Z. Yu, C. Li, Microstructure and tribological behavior of amorphous crystalline composite coatings using laser melting, Applied Surface Science, 258 (2012) 6902-6908. DOI: org/10.1016/j.apsusc.2012.03.130
[17] A. Peker and W. L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Applied Physics Letters. 63 (1993) 2342. DOI: org/10.1063/1.110520
[18] P. Zhang, Q. Zhang, H. Yan, Z. Yu, J. Yang, J. Chen, D. Wu, H. Shi, Y. Tian, S. Ma, W. Lei, Fabrication, microstructure and micromechanical properties of Fe-based metallic glass coating manufactured by laser, Surface and Coatings Technology, 405 (2021) 126726. DOI: org/10.1016/j.surfcoat.2020.126726
[19] Z. P. Lu, C. T. Liu, Role of minor alloying additions in formation of bulk metallic glasses: A Review, Journal of Materials Science, 39 (2004) 3965–3974. DOI: org/10.1023/B:JMSC.0000031478.73621.64
[20] J. Schroers, G. Kumar, T. M. Hodges, S. Chan, T. R. Kyriakides, Bulk metallic glasses for biomedical applications, Biomedical Materials and Devices, 61 (2009) 21–29. DOI: org/10.1007/s11837-009-0128-1
[21] Z. Liu, K.C. Chan, L. Liu, S.F. Guo, Bioactive calcium titanate coatings on a Zr-based bulk metallic glass by laser cladding, Materials Letters, 82 (2012) 67-70. DOI: org/10.1016/j.matlet.2012.05.022
[22] H. F. Li, Y. F. Zheng, Recent advances in bulk metallic glasses for biomedical applications, Acta Biomaterialia, 36 (2016) 1-20. DOI: org/10.1016/j.actbio.2016.03.047
[23] M. Birnbaum, Semiconductor Surface Damage Produced by Ruby Lasers, Journal of Applied Physics, 36 (1965) 3688-3689. DOI: org/10.1063/1.1703071
[24] X. Wang, P. Lu, N. Dai, Y. Li, C. Liao, Q. Zheng, L. Liu, Noncrystalline micromachining of morphous alloys using femtosecond laser pulses, Materials Letters, 61 (2007) 4290-4293. DOI: org/10.1016/j.matlet.2007.01.089
[25] F. Ma, J. Yang, X. Zhu, C. Liang, H. Wang, Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass, Applied Surface Science, 256 (2010) 3653-3660. DOI: org/10.1016/j.apsusc.2010.01.003
[26] N. Li, T. Xia, L. Heng, L. Liu, Superhydrophobic Zr-based metallic glass surface with high adhesive force, Appl. Phys. Lett, 102 (2013) 251603, DOI: org/10.1063/1.4812480
[27] W. Jiang, J. Su, X. Feng, Effect of surface roughness on nanoindentation test of thin films, Engineering Fracture Mechanics, 75 (2008) 4965–4972, DOI: org/10.1016/j.engfracmech.2008.06.016
[28] Tadmor EB, Ortiz M, Phillips R, Quasi-continuum analysis of defects in solids, Philos Mag A, 73 (1996)1529–63.
[29] Tadmor EB, Ortiz M, Phillips R, Mixed atomistic and continuum models of deformation in solids, Langmuir, 12 (1996) 4529–34.
[30] Jeppe B. N., J. M. Savolainen, M. S. Christensen, P. Balling, Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates, Applied Physics A, 101 (2010) 97–101. DOI: org/10.1007/s00339-010-5766-1
[31] J. M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Optics Letters, Vol. 7 (1982) 196-198. DOI: 10.1364/ol.7.000196.
[32] B. Neuenschwander, B. Jaeggi, M. Schmid, G. Hennig, Surface structuring with ultra-short laser pulses: Basics, limitations and needs for high throughput, Physics Procedia, Vol. 56 (2014) 1047-1058. DOI: org/10.1016/j.phpro.2014.08.017
[33] P.T Mannion, J Magee, E Coyne, G.M O’Connor, T.J Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air, Applied Surface Science 233 (2004) 275-287. DOI: org/10.1016/j.apsusc.2004.03.229
[34] T. L. Chang, Z. C. Chen, Y. W. Lee, Y. H. Li, C. P. Wang, Ultrafast laser ablation of soda-lime glass for fabricating microfluidic pillar array channels, Microelectronic Engineering, Vol. 158 (2016) 95-101. DOI: org/10.1016/j.mee.2016.03.034
[35] F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo Mezzapesa, A. Ancona, P. Mario Lugarà, Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates, Optics Express, 22 10 (2014) 12200-12210 DOI: org/10.1364/OE.22.012200
[36] Y. Jee, M. F Becker, R M. Walser, Laser-induced damage on single-crystal metal surfaces, J. Opt. Soc. Am. B, 5 (1988)
[37] S. K. Sethi, G. Manik, Recent Progress in Super Hydrophobic/Hydrophilic Self-Cleaning Surfaces for Various Industrial Applications: A Review, Polymer-Plastics Technology and Engineering, 57 (2018) 1932-1952. DOI: org/10.1080/03602559.2018.1447128
[38] S. Vafaei, M. Z. Podowski, Analysis of the relationship between liquid droplet size and contact angle, Advances in Colloid and Interface Science, 113 (2005) 33-146. DOI: org/10.1016/j.cis.2005.03.001
[39] R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial and Engineering Chemistry, Vol. 28 (1936) 988-994. DOI: org/10.1021/ie50320a024
[40] A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society, Vol. 40 (1944) 546-551. DOI: 10.1039/tf9444000546
[41] D. K. Chakrabarty, S. K. Chopkar and N. N. Purkait, Femtosecond terawatt laser system to produce artificial rain, 2009 4th International Conference on Computers and Devices for Communication (CODEC), Kolkata, India, 2009, pp. 1-3.
[42] Siqi Luo, C. Mark Denning, John E. Scharer, Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas, Journal of Applied Physics, 104 (2008) 013301. DOI:org/10.1063/1.2946718
[43] A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, V. V. Trubaev, Surface electromagnetic waves in optics, Optical Engineering, 31 (1992) 13. DOI: org/10.1117/12.56133
[44] M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M.C. Morant-Miñana, M. Gómez-Aranzadi, S.M. Olaizola, Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS, Applied Surface Science, 374 (2016) 81-89. DOI:org/10.1016/j.apsusc.2015.09.261
[45] A. Cunha, A. P. Serro, V. Oliveira, A. Almeida, R. Vilar, MC. Durrieu, Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces, Applied Surface Science, 265 (2013) 688-696. DOI: org/10.1016/j.apsusc.2012.11.085
[46] Toraya, H., Yoshimura, M., Somiya, S, Calibration Curve for Quantitative Analysis of the Monoclinic‐Tetragonal ZrO2 System by X‐Ray Diffraction, Journal of the American Ceramic Society, 67 (1984) 119-121. DOI:org/10.1111/j.1151-2916.1984.tb19715.x
[47] C. Gautam, J. Joyner, A. Gautam, J. Rao, R. Vajtai, Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications, Royal society of Chemistry, 45 (2016) 19194-19215. DOI: org/10.1039/C6DT03484E
[48] K. He, N. Chen, C. Wang, L. Wei, J. Chen, Method for Determining Crystal Grain Size by X-Ray Diffraction, Crystal Research and Technology, 53 (2018) 1700157. DOI: org/10.1002/crat.201700157
[49] G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chemical Physics Letters, 450 (2008) 355-359. DOI: org/10.1016/j.cplett.2007.11.033
[50] E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, E. Bormashenko, Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition, Journal of Colloid and Interface Science, 311 (2007) 212-216. DOI: org/10.1016/j.jcis.2007.02.049
[51] W. G. Jiang, J. J. Su, X. Q. Feng, Effect of surface roughness on nanoindentation test of thin films, Engineering Fracture Mechanics, 75 (2008) 4965-4972. DOI: org/10.1016/j.engfracmech.2008.06.016
校內:2028-08-17公開