簡易檢索 / 詳目顯示

研究生: 楊氏金燕
Yen, Duong Thi Kim
論文名稱: 添加 α-MoO3 奈米帶及中孔洞 TiO2 顆粒以強化 g-C3N4 之光催化效果
Enhanced photocatalytic performance of g-C3N4 through the addition of α-MoO3 nanobelts and TiO2 mesoporous beads
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 96
外文關鍵詞: MoO3 /g-C3N4, Carbon nitride, TiO2 mesoporous beads
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以g-C3N4為基礎來合成多組分光催化劑並提高g-C3N4的光催化性能。
    。將三聚氰胺加熱到550℃並加入過氧化氫(H2O2)來剝離 g-C3N4塊材,總共運用兩個步驟來製備Mesoporous TiO2 beads,使用水熱法製備α-MoO3 nanobelts,再製備兩組具有不同組成的二元成分光催化劑TiO2 mesoporous beads/exfoliated g-C3N4s和α-MoO3 nanobelts/ exfoliated g-C3N4 。基於這些二元組分光催化劑的性能,再合成三元復合光催化劑α-MoO3 nanobelts/ mesoporous TiO2 beads/exfoliated g-C3N4,最後使用可見光及UV光降解甲基藍以分析二元、三元組分光催化劑的光催化性能。

    Multi-component photocatalysts based on g-C3N4 was synthesized to enhance the photocatalytic performance of g-C3N4. Exfoliated g-C3N4 was fabricated by heating melamine at 550°C, followed by the use of hydrogen peroxide (H2O2) to exfoliate bulk g-C3N4. Mesoporous TiO2 beads were prepared using a two-step process. α-MoO3 nanobelts were made by the hydrothermal method. Two groups of binary-component photocatalysts of TiO2 mesoporous beads/exfoliated g-C3N4, and α-MoO3 nanobelts/ exfoliated g-C3N4 having various compositions were then made. Based on the performance of these binary-component photocatalysts, α-MoO3 nanobelts/ mesoporousTiO2 beads/exfoliated g-C3N4 ternary composite photocatalysts were synthesized. The photocatalytic performance of all the single-binary and ternary component photocatalysts was evaluated by degrading methyl blue under both UV and visible light irradiations.

    ACKNOWLEDGMENT i 摘要 ii ABSTRACT iii CONTENTS iv LIST OF TABLES viii LIST OF FIGURES ix CHAPTER 1 INTRODUCTION 1 1.1 Introduction 1 1.1.1 Motivations 1 1.1.2 Objectives 1 1.2 Background 2 1.2.1 General Back Ground on Photocatalysis 2 1.2.2 Definition of Photocatalysis 2 1.2.3 Mechanism of Photocatalysis 3 1.2.4 Graphitic Carbon Nitride 5 1.3 Literature review 12 1.3.1 Increasing Surface Area 12 1.3.2 Addition of the other semiconductor materials 18 CHAPTER 2 EXPERIMENTAL METHODS 27 2.1 Material 27 2.2 Sample Synthesis 27 2.2.1 Synthesis of exfoliated g-C3N4 27 2.2.2 Synthesis of α MoO3 nanobelts 28 2.2.3 Synthesis of α MoO3 nanobelts/ exfoliated g- C3N4 28 2.2.4 Synthesis of TiO2 mesoporous beads 29 2.2.5 Synthesis of TiO2 mesoporous beads/exfoliated g-C3N4 30 2.2.6 Synthesis of α MoO3 nanobelts / TiO2 beads/ exfoliated g-C3N4 30 2.3 Characterization 31 2.3.1 X-Ray Diffraction (XRD) 31 2.3.2 X-Ray Photoemission Spectroscopy (XPS) 31 2.3.3 Scanning Electron Microscopy (SEM) 32 2.3.4 UV-Visible Spectroscopy (UV-vis) 32 2.3.5 Photoluminescence Spectroscopy (PL) 32 2.3.6 Photocatalytic Performance Measurement 32 CHAPTER 3 RESULTS AND DISCUSSION 33 3.1 Exfoliated Graphitic Carbon Nitride Photocatalyst 33 3.1.1 XRD Analysis 33 3.1.2 SEM Analysis 34 3.1.3 BET Analysis 34 3.1.4 FTIR Analysis 35 3.1.5 XPS Analysis 35 3.1.6 UV-Visible Absorption Analysis 37 3.1.7 Photocatalytic Degradation Analysis 38 3.1.8 PL Analysis 40 3.2 α – MoO3 nanobelts Photocatalyst 41 3.2.1 XRD Analysis 41 3.2.2 SEM Analysis 42 3.2.3 UV-Vis Absorption Analysis 43 3.2.4 Photocatalytic Degradation Analysis 43 3.3 TiO2 mesoporous beads Photocatalyst 45 3.3.1 XRD Analysis 45 3.3.2 SEM Analysis 45 3.3.3 UV-Vis Absorption Analysis 46 3.3.4 Photocatalytic Degradation Analysis 47 3.4 TiO2 beads/ exfoliated g-C3N4 Composite Photocatalyst 48 3.4.1 XRD Analysis 48 3.4.2 XPS Analysis 49 3.4.3 UV-Visible Absorption Analysis 54 3.4.4 SEM Analysis 55 3.4.5 PL Analysis 56 3.4.6 Photocatalytic Degradation Analysis 58 3.5 α– MoO3 nanobelts/ Exfoliated g-C3N4 (CNH) Photocatalyst 61 3.5.1 XRD Analysis 61 3.5.2 XPS Analysis 62 3.5.3 SEM Analysis 70 3.5.4 UV- Vis Absorption Analysis 72 3.5.5 PL Analysis 73 3.5.6 Photocatalytic Degradation Analysis 74 3.6 MoO3 α-nanobelts/ mesoporous TiO2 beads/ exfoliated g-C3N4 Composite Photocatalyst 80 3.6.1 XRD Analysis 80 3.6.2 SEM Analysis 81 3.6.3 XPS Analysis 82 3.6.4 UV-Absorption Analysis 83 3.6.5 PL Analysis 84 3.6.6 Photocatalytic degradation Analysis 85 3.7 Previous Works (Ppy material) 89 CHAPTER 4 CONCLUSIONS 91 REFERENCES 92

    [1] U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress, and problems,” J. Photochem. Photobiol. C Photochem. Rev., vol. 9, no. 1, 1–12, 2008.
    [2] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B Environ., vol. 125, 331–349, 2012.
    [3] S. Anandan, Y. Ikuma and K. Niwa, “An Overview of Semi-Conductor Photocatalysis: Modification of TiO2 Nanomaterials”, Solid State Phenomena, vol. 162, 239-260, 2010
    [4] A.Y. Liu, M.L. Cohen, “Prediction of new low compressibility solids”, Science, vol 245, 841–842, 1989.
    [5] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light”, Nature material 8, 76–80, 2009.
    [6] Junjiang Zhu, Ming Xiao, Hailong Li, and Sonia A. C. Carabineiro, “Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis”, ACS Appl. Mater. Interfaces, 16449–16465, 2014.
    [7] David M. Teter, Russell J. Hemley, “Low-Compressibility Carbon Nitrides”, Science, vol.271, 53-55, 1996.
    [8] Guoping Dong, Yuanhao Zhang, Qiwen Pan, Jianrong Qiu, “A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.20, 33-35, 2014.
    [9] Malkow T, Mat. Sci. Eng. A, vol.292, 112-124, 2000.
    [10] Guo Q X, Xie Y, Wang X J, Lv S C, Hou T, Liu X M, “Synthesis of new cubic C3N4 and diamond-like BC3 phases under high pressure and high temperature”, Chem. Phys. Lett., vol.380, 1-10, 2003.
    [11] Lu W, Komvopoulos K, J, “Microstructure and nanomechanical properties of nitrogenated amorphous carbon thin films synthesized by reactive radio frequency sputtering”, Appl. Phys., vol.85, 2642-2651, 1999.
    [12] Su, F, Antonietti, M., Wang, X., “Mpg-C3N4 as a Solid Base Catalyst for Knoevenagel Condensations and Transesterification Reactions”, Catal. Sci. Technol, vol.2, 1005−1009, 2012.
    [13] Zhu, J. J., Wei, Y. C., Chen, W. K., Zhao, Z.; Thomas, A., “Graphitic Carbon Nitride as a Metal-Free Catalyst for No Decomposition”, Chem. Commun., vol.46, 6965−6967, 2010.
    [14] Wang, X. C., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., Antonietti, M, “A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light”, Nat. Mater, vol.8,76−80, 2009.
    [15] Liebig, J. Uber Einige Stickstoff - Verbindungen. Ann. Pharm., “Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells”, J Phys Chem C Nanomater Interfaces, vol.10, 1−47, 1834.
    [16] B. Chai, T.Y. Peng, J. Mao, K. Li, L. Zhang, “Graphitic carbon nitride (g-C3N4)–Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation”, Chem. Phys, vol.14,16745–16752, 2012.
    [17] A. Kudo, Y. Miseki, “Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev, vol.38, 253–278, 2009.
    [18] Kazuhiko Maeda, Xinchen Wang, Yasushi Nishihara, Daling Lu, Markus Antonietti và Kazunari Domen, “Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light”, J. Phys. Chem. C, vol.113, 4940–4947, 2009.
    [19] Franklin, E. C, “Photocatalytic Synthesis of Phenol by Direct Hydroxylation of Benzene by a Modified Nanoporous Silica (LUS-1) under Sunlight”, J. Am. Chem. Soc, vol.33, 1347-1353, 2012.
    [20] Pauling, L.; Sturdivant, J. H., “TheStructure of Cyameluric Acid, Hydromelonic Acid and Related Substances”, Pro. Natl. Acad. Sci. U. S. A, vol.23, 615-620, 1937.
    [21] Redemann, C. E.; Lucas, “Chemical properties and molecular structure of derivatives of sym-Heptazine [1,3,4,6,7,9b-Heptaazaphenalene, tri-1,3,5-triazine] –IOPscience”, J. Am. Chem. Soc, vol.62, 842-846, 1940.
    [22] Xinchen Wang, Siegfried Blechert and Markus Antonietti, “Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis”, ACS Catal., 1596-1606, 2012.
    [23] Kroke, E.; Schwarz, M. Coord, “Investigation of the structure of carbon-nitrogen compounds”, Chem. Rev, vol. 248, 493-532, 2004.
    [24] Sehnert, J.; Baerwinkel, K.; Senker, “Ab Initio Calculation of Solid-State NMR Spectra for Different Triazine and Heptazine Based Structure Proposals of g-C3N4”, J. Phys. Chem. B, vol.111, 10671-10680, 2007.
    [25] Horvath-Bordon, E.; Kroke, E.; Svoboda, I.; Fuess, H.; Riedel, “Potassium melonate, K3[C6N7(NCN)3].5H2O, and its potential use for the synthesis of graphite-like C3N4 materials”, R. New J. Chem, vol.29, 693-699, 2005.
    [26] Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, “Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture”, J. Mater. Chem., vol.18, 4893-4908, 2008.
    [27] Shaowen Cao, Jingxiang Low, Jiaguo Yu and Mietek Jaroniec, “Polymeric Photocatalysts Based on Graphitic Carbon Nitride”, Adv. Mater, vol.27, 2150–2176, 2015.
    [28] S.W. Kohl, L. Weiner, L. Schwartsburd, L. Konstantinovski, L.J.W. Shimon, Y. Ben-David, M.A. Iron, D. Milstein, “New Homogeneously Catalyzed Dehydrogenation and Hydrogenation of Polar Bonds. Esters and H2 from Alcohols, Hydrogenation of Esters, and Related Reactions”, Science, vol. 324, 74–77, 2009.
    [29] Chen, C. C.; Ma, W. H.; Zhao, “In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation”, J. C. Chem. Soc. Rev, vol.39,4206-4219, 2010.
    [30] Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, “Metal-free catalysis of sustainable Friedel–Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds”, A. Chem. Commun, 4530-4532, 2006
    [31] Yan, S. C.; Li, Z. S.; Zou, “The origins of the broadband photoluminescence from carbon nitrides and applications to white light emitting”, Z. G. Langmuir, vol.26, 3894-3901, 2010.
    [32] XinheWu, FengyunChen, XuefeiWang, HuogenYu, “In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance”, Applied Surface Science, vol.427, 645-653, 2017.
    [33] L. Wang and T. Sasaki, “Soft Chemical Synthesis of Functionalized Silicene”, Chem. Rev, vol.114, 9455-9486, 2014.
    [34] P. Niu, L. Zhang, G. Liu and H. Cheng, “Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities”, Adv. Funct. Mater., vol.22, 4763-4770, 2012.
    [35] Xiaoping Dong and Fuxing Cheng, “Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications”, J. Mater. Chem. A, vol. 3, 23642- 23652, 2015.
    [36] Jing Xu, Liwu Zhang, Rui Shi and Yongfa Zhu, “Chemical exfoliation of graphitic carbon nitride forefficient heterogeneous photocatalysis”, J. Mater. Chem. A, vol.1, 14766-14772, 2013.
    [37] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, S. B. T. Nguyen and R. S. Ruoff, Carbon, “Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide”, Carbon, vol.45, 1558-1565, 2007.
    [38] Lei Li, Jingcheng Xu, Genghui Li, Xilai Jia, Yongfeng Li, Fan Yang, Liqiang Zhang, Chunming Xu, Jinsen Gao, Yi Liu, Zhaowei Fang, “Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation”, Chemical Engineering Journal, vol.284, 78-84, 2015.
    [39] G.K. Serhat Kutlu, C. Dilek, E. Gulari, “Supercritical CO2 intercalation of layered silicates”, J. Supercrit. Fluid, vol.39, 264–270, 2006.
    [40] N.-W. Pu, C.-A. Wang, Y. Sung, Y.-M. Liu, M.-D. Ger, “Production of few-layer graphene by supercritical CO2 exfoliation of graphite”, Mater. Lett, vol. 63, 1987–1989, 2009.

    下載圖示 校內:2019-08-31公開
    校外:2019-08-31公開
    QR CODE