簡易檢索 / 詳目顯示

研究生: 施宣宇
Shi, Xian-Yu
論文名稱: 具選擇性之超順磁核心-外鞘型奈米為基礎之新穎口腔癌治療策略
A novel oral cancer therapeutic strategy based on superparamagnetic core-shell nanoparticle with selective anti-cancer effect
指導教授: 謝達斌
Shieh, Dar-Bin
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 77
中文關鍵詞: 奈米口腔癌治療
外文關鍵詞: oral cancer, therapy, nanotechnology
相關次數: 點閱:100下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   據統計,在台灣男性的癌症十大死因中,口腔癌居第四位,而嚼食檳
    榔則為其主要原因。奈米科技是一研究奈米尺度層級材料的新興科學,
    奈米材料的物化學特性往往異於巨觀態因而得以應用於許多不同的領
    域,然而其再生醫界的應用仍在萌芽的階段。在本研究中,我們合成一
    新型超順磁核心(鐵)-外鞘(金)型奈米顆粒(Fe@Au)並分析評估單獨或結
    合抗癌藥劑後之奈米粒子對於口腔癌的治療效果。本研究中利用的奈米
    粒徑有9 nm 與22 nm 二種且具有可被磁場導引之特質。利用表面交聯
    的方式,我們將抗癌藥物methotrexate(MTX) 銜接於22 nm 的Fe@Au
    奈米表面(Fe@Au-MTX)並比較Fe@Au、MTX 本身及同時給予Fe@Au
    和MTX 之癌細胞毒殺性及其對正常細胞之影響。由細胞毒殺測試的實
    驗結果發現在口腔癌細胞OECM1 中,Fe@Au-MTX 造成的細胞毒殺效
    果遠比Fe@Au 或MTX 單獨給予來得差。但同時給予Fe@Au 和自由態
    之MTX 所造成的毒殺效果則有加成作用。而正常的口腔上皮細胞則對
    四種處置皆有明顯之抗性或僅表現些微毒殺性。此外,我們發現當奈米
    粒子保存在一般空氣或水溶液中,會在約二週間漸漸失去其毒殺效果。
    由於奈米殼層僅約三層原子厚度或可使內部之鐵元素有機會轉移至外
    部,而過量之三價鐵離子具有細胞毒殺性,因此我們比較了三價鐵離子
    對於正常細胞與口腔癌細胞的毒殺效果。結果發現正常細胞與OECM1
    對三價鐵離子的抵抗力卻沒有顯著差異。然而轉移癌細胞株HSC-3 具較
    強的三價鐵離子抵抗力,其對Fe@Au 奈米粒子的毒殺抗性也相對較
    高。在粒線體膜電位變化的實驗裡,我們發現Fe@Au 可以明顯地增加
    OECM1 粒線體膜的通透性,而在正常細胞的影響則不明顯。另Fe@Au
    明顯地促進粒線體膜電位喪失,正常細胞可在24 小時後漸行復原,但
    癌細胞卻無法。本研究初步開發了一種具有選擇性毒殺癌細胞、可磁場
    導引、可自我定時轉化為無毒性物質的新穎抗癌藥物。並於體外模型研
    究中證實其選擇性毒殺口腔癌的成效。奈米粒子造成癌細胞細胞毒殺機
    制可能包括了影響粒線體膜的通透性、三價鐵離子在局部的釋放與細胞
    毒性、細胞內氧化還原酵素的干擾等。然而更詳細的毒殺機制仍待進一
    步的研究釐清。

      Oral cancer ranked the forth-leading cause of cancer deaths in
    Taiwanese male population owing to the prevalent betel quid chewing habits.
    Nanotechnology holds great potential for the development of new
    therapeutic strategies as nanoscale sized material may present distinct
    physical and chemical properties than their bulk status. In this study, we
    synthesized a novel Fe-core-Au-shell (Fe@Au) nanoparticle that exhibited
    superparamagnetic property for magnetic force guided targeting. The
    nanoparticles with the particle size of 9 or 22 nm presented enhanced
    cytotoxic effect to the oral cancer cells compared to the normal oral
    keratinocytes. The cross-linking strategy for the Au-shell was established
    to carry the anti-cancer drug – methotrexate (Fe@Au-MTX). The LD50 in
    normal oral keratinocyte, dysplasia, and oral cancer cells was evaluated and
    the results showed that Fe@Au-MTX has significantly decreased cytotoxic
    effect to oral cancer cells compared to the Fe@Au alone, while Fe@Au and
    free MTX presented synergic cytotoxic effect to the cancer cell. Besides,
    the Fe@Au nanoparticle lost their cytotoxic effect spontaneously after two
    weeks exposure in air or in the aqueous solutions. As the Au shell layer
    has only about three atoms thickness and the inner iron may get access to the
    surface, the released iron may play certain role in the observed cytotoxic
    response as the accumulation of excess ferric ions has been reported to
    induce cell death. To evaluate this potential pathway, the cytotoxic effect
    of free ferric ion (III) to the normal versus oral cancer cells was evaluated.
    The results failed to show significant differences in the tolerance of ferric
    ion challenge between cancer and normal oral keratinocytes except one
    metastatic cancer line that presented high resistance to both ferric ion and
    the nanoparticle treatments. In addition, inhibition of endosome activity by
    chloroquinone, which may prevents the ferric ion (III) releasing from the
    nanoparticle core, abate the nanoparticle derived cytotoxicity effect. In the
    study of mitochondrial membrane potential alterations in response to the
    Fe@Au treatment, significantly enhanced mitochondrial membrane
    permeability and lost of membrane potential was observed, while only
    normal cells could reverse the membrane potential aftyer 24 hrs of treatment.
    In summary, this study demonstrated the potential development of a novel
    class of anti-cancer drug with selective cytotoxicity toward cancer cells,
    magnetic field guiding property and self-timer controlled transformation into
    non-toxic form for safely metabolic excretion. The execution of its
    differential cytotoxic effect on cancer cells may involve multiple pathways
    including the mitochondrial membrane alterations, local releasing of ferric
    ions and the interference with the cellular REDOX enzyme activity.
    However, the underlying molecular mechanisms for this selective reponse
    remained to be elucidated.

    1 中文摘要 6 Abstract .. 8 I. INTRODUCTION.......................................................................................................... 10 1. Oral cancer ...................................................................................................................... 10 1.1 Epidemiology ...................................................................................................... 10 1.2 Classification and staging of OSCC.................................................................... 11 1.3 Disease survival and recent development in OSCC therapeutic strategy ........... 13 2. Nanotechnology................................................................................................................ 15 2.1 Nano era .............................................................................................................15 2.2 Characteristics of nanoparticles .......................................................................... 18 2.2.1 The surface effect ..................................................................................... 18 2.2.2 The size effect36, 38.................................................................................... 19 2.2.3 Particle to particle interactions 39 ......................................................... 20 2.3 Metal nanoparticles ............................................................................................. 21 2.3.1 Magnetic property and Superparamagnetism........................................... 21 2.3.2 Catalytic property..................................................................................... 22 2.3.3 Optics property39 ...................................................................................... 23 2.3 Nanotechnology and cancer therapy .................................................................. 23 II. Material and Methods..................................................................................................... 26 Culture of normal oral keratinocytes.................................................................... 26 Culture of oral cancer lines .................................................................................. 26 Preparation of the superparamagnetic nanoparticles and associated reagents ..... 28 Cell viability assay ............................................................................................... 29 Mitochondria membrane potential assay by JC-1 dye ......................................... 31 Transmission electron microscopy (TEM) observation ....................................... 34 Statistic analysis ................................................................................................... 34 III. Results ............................................................................................................................ 36 Cytotoxicity of 22 nm Fe@Au, MTX, Fe@Au-MTX, Fe@Au combined MTX in oral cancer cell lines and normal oral keratinocytes ........................................ 36 Cytotoxicity of 9 nm Fe@Au nanoparticles in the normal oral keratinocyte and cancer cell lines .................................................................................................... 37 The aging effect on the cytotoxicity effect of nanoparticle.................................. 39 The cytotoxic effect of Fe3+ on normal and cancer cells...................................... 40 The mitochondrial membrane potential alterations after treatment with Fe@Au nanoparticle .......................................................................................................... 41 IV. Discussion ...................................................................................................................... 60 V. References ...................................................................................................................... 66 VI. Appendix ........................................................................................................................ 70 Characteristics of Fe@Au and Fe@Au-MTX...................................................... 70 VII. About the author................................................................................................... 77

    1. 韓良俊. "檳榔的健康危害." 健康世界叢書, 2000, 144
    2. 楊奕馨. "檳榔嚼塊與口腔癌流行病學研究." 國家衛生院研究論壇,
    2000
    3. 行政院衛生署. "台灣地區主要癌症死亡原因.", 2003
    4. 陳建仁. "中華民國癌症死亡率分佈地圖集:民國七十一年至八十年.",
    1996
    5. Worrall, S. F. "Oral cancer-An overview.", 2001
    6. 郭彥彬. "嚼檳榔與口腔癌癌基因, 抑癌基因的突變和表現." 國家衛
    生研究院論壇, 2000
    7. Kuo, M. Y., H. H. Chang, et al. J Oral Pathol Med, 1995, 24, 255
    8. Kuo MYP, L. C., Hahn LJ, et al. J Oral Pathol & Med, 1999, 28, 165
    9. Yan, J. J., C. C. Tzeng, et al. J Oral Pathol Med, 1996, 25, 55
    10.
    Wong, Y. K., T. Y. Liu, et al. J Oral Pathol Med, 1998, 27, 243
    11. Kuo, M. Y., J. S. Huang, et al. J Oral Pathol Med, 1999 28, 221
    12. Yen-Ping Kuo, M., J. S. Huang, et al. J Oral Pathol Med, 2002, 31, 16
    13. Huang, J. S., C. P. Chiang, et al. J Oral Pathol Med, 1997, 26, 322
    14. Kuo, M. Y., J. H. Jeng, et al.. J Oral Pathol Med, 1994, 23, 70
    15. Jon S., Magne B., et al. Oral Oncol, 2003, 39, 749
    16. Schwartz G. J., Mehta R. H., et al. Head Neck, 2000, 22, 34
    67
    17. Schrijvers D., Johnson J., et al. J clin Oncol, 1998, 16, 1054
    18. Xi, S., Grandis, J. R., et al. J Dent Res, 2003, 82, 11
    19. Allegretti J. P., Penje W. R., et al. Laryngoscope, 2001, 111, 52
    20. Clayman G. L., Trapnell B. C., et al. Cancer Gene Ther, 1995, 2, 105
    21. Hogset A., Ovstebo E. B., et al. Cancer Gene Ther, 2002, 9, 365
    22. Fukui T., Hayashi H., et al. Oral oncol, 2001, 37, 211
    23. Harrington K. J., Lewanski C. R., et al. Ann Oncol, 2001, 12, 493
    24. Xu L., Pirollo K. F., et al. Hum Gene Ther, 1999, 10, 2941
    25. Yoo G. H., Hung M. C., et al. Clin Cancer Res, 2001, 7, 1237
    26. Brenner M., et al. Mol Ther, 2000, 1, 205
    27. Gabor M. R. Mol Aspects Med, 2001, 22, 113
    28. Lehn J. M. Supramolecular Ensembles: VCH: NEW YORK, 1995.
    29. 牟中原, 陳家俊, ”奈米材料研究發展”, 科學發展月刊, 2001
    30. Asian Technology Information Program Report, 2001
    31. 廖建勛, ”奈米材料的發展動態”, 化工資訊, 1998, 12
    32. 劉祥麟, ”台灣奈米科技研究體系之簡介”, 物理雙月刊, 2001, 23,
    599
    33. http://nano-taiwan.sinica.edu.tw/ProjectEn.asp?S=5
    34. http://www.taipeitimes.com/News/biz/archives/2003/01/14/190974
    35. http://www.itdg.org/html/whats_new/is_small_beautiful_welland.htm
    36. A. P. Alivisatos, Science 1996, 271, 933.
    37. 黃德歡, “改變世界的奈米技術”, 瀛舟出版社, 2002
    38. Rao C. N. R. Chem. Eur. J. 2002, 8, 28
    68
    39. 陳毓宏,「新穎的奈米粒子合成方法與在生醫上的應用:金銀,金鈀」,
    國立成功大學化學研究所博士論文,民國92 年。
    40. 蘇家豪,「金奈米粒子之研究:修飾與製備」,國立成功大學化學研究
    所博士論文,民國92 年。
    41. 韓岱君,「含碳化鐵(Fe3C)奈米磁顆粒之非晶質碳膜其微觀結構、磁
    性質與磁阻之研究」,國立成功大學物理研究所博士論文,民國91 年。
    42. D. W. Kckee, J Phys Chem. 1963, 67, 2846
    43. Hammer, B.; Nørskov, J. K. Nature 1995, 376, 238.
    44. Javier G.; Bruce C. G., J. AM. CHEM. SOC. 2004, 126, 2672
    45. 張仕欣, 王崇人, “金屬奈米粒子的吸收光譜”, 化學, 1998, 56, 209
    46. Santhakumaran L. M., Thomas, T., et al. Nucleic Acids Res, 2004, 32,
    2102
    47. Loo C., Lin A., et al. Technol Cancer Res Treat, 2004, 3, 33
    48. Roy I., Ohulchanskyy T. Y., et al. J Am Chem Soc, 2003, 125, 7860
    49. Kong G., Braun R. D., et al. Cancer Res, 2000, 60, 4440
    50. Kircher M. F., Mahmood U., et al. Cancer Res, 2003, 63, 8122
    51. Schellenberger E. A., Hogemann D., et al. Mol Imaging, 2002, 1, 102
    52. Paciotti G. F., Myer L., et al. Drug Deliv, 2004, 11, 169
    53. Hood J. D., Bednarski M., et al. Science, 2002, 296, 2404
    54. Kim L. S., Kaga K., et al. Auris Nasus Larynx, 1993, 20, 155
    55. Lin S. C., Chang K. W., et al. Proc. Natl. Sci. Counc. ROC, 2000,24,
    129
    56. Santhakumaran L. M., Thomas T., et al. Nucleic Acids Res, 2004, 32,
    2102
    57. Loo C., Lin A., et al. Technol Cancer Res Treat, 2004, 3, 33
    58. Onishi H., Machida Y., et al. Biol Pharm Bull, 2003, 26, 116
    59. Roy I., Ohulchanskyy T. Y., et al. J Am Chem Soc, 2003, 125, 7860
    60. Wang S., Joshi S., et al. Methods Mol Biol, 2004, 245, 185
    61. Heiser, W. C. Methods Mol Biol, 2004, 245, 175
    62. Seo Y. U., Lee S. J., Chem Commun, 2004, 664
    63. Bond G. C., Thompson D. T., Catal Rev Sci Eng, 1999, 41, 319
    64. John W. E., Mingwei Q. Free Radic Biol Med, 2002, 32, 833

    下載圖示 校內:2006-08-30公開
    校外:2007-08-30公開
    QR CODE