簡易檢索 / 詳目顯示

研究生: 范揚東
Fan, Yang-tung
論文名稱: 尖銳凹槽薄壁管在循環彎曲負載下力學行為和皺曲損壞之研究
The Mechanical Behavior and Buckling Failure of Sharp-Notched Thin-Walled Tubes under Cyclic Bending
指導教授: 潘文峰
Pan, Wen-feng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 57
中文關鍵詞: 皺曲硬化橢圓化
外文關鍵詞: buckling, hardening, ovalization
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要針對五種不同尖銳凹槽深度的SUS304不銹鋼管做對稱循環彎曲負載實驗,以探討其力學行為與皺曲損壞的關係。實驗係透過彎管試驗機與曲度-橢圓化量測器來進行實驗數據的控制、量測及蒐集。從實驗彎矩-曲度曲線圖中顯示出,在控制曲度做循環彎曲負載時,實驗試件皆有循環硬化的現象產生,且經過反覆的加載與卸載行為後,其迴圈會漸趨於穩定。其次,由實驗橢圓化-曲度的曲線圖發現,橢圓化值會隨著循環彎曲的圈數增加而成棘齒狀的增加,且當橢圓化值增加到某一臨界值時,圓管便會發生皺曲損壞。此外,由實驗曲度-循環圈數的關係圖可看出,控制的曲度越大時,循環圈數就越小。若將上述實驗值置於雙對數座標中,發現五個不同尖銳凹槽深度的試件其上述關係可近似為五條幾乎平行的直線。最後,參考Shaw 和 Kyriakides【2】、Lee等人【11】與陳立銓【17】論文中所提出的理論方程式,並導入尖銳凹槽深度後提出一個可以描述不同尖銳凹槽深度薄壁管在循環彎曲負載時,控制曲度與循環彎曲皺曲圈數關係的理論方程式。在與實驗值做比較後發現,理論分析能充分的描述實驗結果。

    This thesis investigates the mechanical behavior and buckling failure of SUS 304 stainless steel tubes with five different sharp-notched lengths subjected to symmetric cycling bending. The tube bending machine and curvature-ovalization measurement apparatus was used to control, measure and collect the experimental data. It can be observed from the experimental moment-curvature curve that the tube exhibits cyclical hardening during the symmetric cycling bending and becomes steady after a few cycles. Next, for the experimental ovalization-curvature curve, the ovalization of the tube cross-section increases in a ratcheting manner with the number of cycles. When the tube ovalization reaches to a critical amount, the tube buckles. In addition, it is shown in the experimental curvature-number of cycles curve that the larger control curvature leads to a fewer amount of the number of cycles. If the aforementioned experimental data plot in a log-log scale, five almost parallel straight lines can be found for five different sharp-notched lengths. Finally, by referring the theoretical formulations proposed by Shaw and Kyriakides【2】, Lee et al.【11】and Chen【17】and including the factor of the sharp-notched lengths, a theoretical formulation was proposed to simulate the relationship between the controlled curvature and the number of cycles to produce buckling. By comparing the theoretical analysis with the experimental data, it is shown that the theoretical formulation can properly simulate the experimental results.

    摘 要 ------------------------------------------------Ⅰ Abstract ------------------------------------------------Ⅱ 誌  謝 ------------------------------------------------Ⅲ 目 錄 ------------------------------------------------Ⅳ 表 目 錄 ------------------------------------------------Ⅵ 圖 目 錄 ------------------------------------------------Ⅶ 符號說明 ------------------------------------------------Ⅹ 第一章 緒論---------------------------------------------1 1-1 研究動機與背景-------------------------------1 1-2 文獻回顧-------------------------------------2 1-3 研究目的-------------------------------------8 第二章 實驗設備----------------------------------------11 2-1 彎管實驗機本體------------------------------11 2-2 油壓伺服控制系統----------------------------13 2-3 電腦控制系統--------------------------------14 2-4 檢測儀器------------------------------------15 2-5 實驗原理------------------------------------18 2-6 整體效能------------------------------------19 第三章 實驗方法----------------------------------------29 3-1 實驗方式------------------------------------29 3-2 實驗材料與幾何------------------------------29 3-3 實驗步驟------------------------------------32 3-4 資料收集與整理------------------------------33 3-5 注意事項------------------------------------35 第四章 實驗結果與理論分析------------------------------37 4-1 力學行為之實驗結果--------------------------37 4-1-1 彎矩與曲度關係----------------------------38 4-1-2 曲度與橢圓化關係--------------------------39 4-1-3 曲度與皺曲損壞關係----------------------39 4-2 理論分析------------------------------------40 第五章 結論--------------------------------------------52 參考文獻 ------------------------------------------------54 表3-1 不銹鋼管的凹槽深度尺寸表------------------------29 表3-2 SUS 304不銹鋼化學元素表-------------------------30 圖1-1 橢圓化量測儀實際照片----------------------------10 圖2-1 彎管實驗機本體的示圖----------------------------21 圖2-2 彎管實驗機本體照片------------------------------21 圖2-3 油壓動力設備照片--------------------------------22 圖2-4 油壓伺服控制系統圖------------------------------22 圖2-5 電腦控制系統照片--------------------------------23 圖2-6 電腦控制控制系統--------------------------------23 圖2-7 曲度-橢圓化檢測器實體照片-----------------------24 圖2-8 曲度-橢圓化檢測器示意圖-------------------------24 圖2-9 曲度-橢圓化檢測器側視圖-------------------------25 圖2-10 曲度量測器量測示意圖----------------------------25 圖2-11 四點純彎曲示意圖--------------------------------26 圖2-12 鏈條拉力轉換彎曲力矩之機構示意圖----------------27 圖2-13 實心桿與薄壁管示意圖----------------------------27 圖2-14 薄壁管正向彎曲負時的油路圖----------------------28 圖2-15 薄壁管反向彎曲負時的油路圖----------------------28 圖3-1 五種不同凹槽尺寸實驗樣本照片--------------------30 圖3-2 管徑實驗樣本尺寸示意圖--------------------------31 圖3-3 斷面橢圓化示意圖--------------------------------36 圖4-1 凹槽深度0.2mm SUS304不銹鋼管之彎矩-曲度曲線圖---44 圖4-2 凹槽深度0.4mm SUS304不銹鋼管之彎矩-曲度曲線圖---44 圖4-3 凹槽深度0.6mm SUS304不銹鋼管之彎矩-曲度曲線圖---45 圖4-4 凹槽深度0.8mm SUS304不銹鋼管之彎矩-曲度曲線圖---45 圖4-5 凹槽深度1.0mm SUS304不銹鋼管之彎矩-曲度曲線圖---46 圖4-6 不同凹槽深度SUS304不銹鋼穩定狀態之彎矩-曲度曲 線圖--------------------------------------------46 圖4-7 凹槽深度0.2mm SUS304不銹鋼管之橢圓化-曲度曲線 圖----------------------------------------------47 圖4-8 凹槽深度0.4mm SUS304不銹鋼管之橢圓化-曲度曲線 圖----------------------------------------------47 圖4-9 凹槽深度0.6mm SUS304不銹鋼管之橢圓化-曲度曲線 圖----------------------------------------------48 圖4-10 凹槽深度0.8mm SUS304不銹鋼管之橢圓化-曲度曲線 圖----------------------------------------------48 圖4-11 凹槽深度1.0mm SUS304不銹鋼管之橢圓化-曲度曲線 圖----------------------------------------------49 圖4-12 不同凹槽深度SUS304不銹鋼管之曲度與皺曲所需的循 環圈數關係圖------------------------------------49 圖4-13 不同凹槽深度SUS304不銹鋼管曲度與皺曲所需循環圈 數對數圖----------------------------------------50 圖4-14 lnC對(a/t)的關係圖------------------------------50 圖4-15 相對應的凹槽深度及厚度示意圖--------------------51 圖4-16 不同凹槽深度SUS304不銹鋼管理論模擬曲度與實驗結 果對照對數圖------------------------------------51

    1.Shaw, P. K. and Kyriakides, S., 1985, “ Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending, ” International Journal of Solids and Structures, Vol. 21, pp. 1073-1100.

    2.Kyriakides, S. and Shaw, P. K., 1987, “ Inelastic Buckling of Tubes under Cyclic Bending, ” Journal of Pressure Vessel Technology, Vol. 109, pp.169-178.

    3.Corona, E. and Kyriakides, S., 1988, “ On the Collapse of Inelastic Tubes under Combined Bending and Pressure, ” International Journal of Solids and Structures, Vol. 24, pp. 505-535.

    4.Corona, E. and Kyriakides, S., 1991, “ An Experimental Investigation Degradation and Buckling of Circular Tubes under Cyclic Bending and External Pressure , ” Thin-Walled Structures, Vol. 12, pp. 229-263.

    5.Ju, G. T. and Kyriakides, S., 1992, “ Bifurcation Buckling Versus Limit Load Instabilities of Elastic-Plastic Tubes under Bending and External Pressure, ” Journal of Offshore Mechanics and Arctic Engineering, Vol. 113, pp. 43-52.

    6.Vaze, P. and Corona, E., 1996, “ Degradation and Collapse of Tube under Cyclic Bending, ” Thin Wall Structures, Vol. 31, pp. 325-341.

    7.Pan, W. F., Wang, T. R. and Hsu, C. M., 1998, “ A Curvature-Ovalization Measurement Apparatus for Circular Tubes under Cyclic Bending, ” Experimental Mechanics, Vol. 38, No.2, pp. 99-102.

    8.Pan, W. F., Her and Y. S., 1998, “ Viscoplastic Collapse of Thin-Walled Tubes under Cyclic Bending, ” Journal of Engineering Materials and Technology, Vol. 120, pp. 001-004.

    9.Pan, W. F. and Fan, C. H., 1998, “ An Experimental Study on the Effect of Curvature-Rate at Preloading Stage on Subsequent Creep or Relaxation of Thin-Walled Tubes under Pure Bending, ” JSME International Journal, Series A, Vol. 41, No.4, pp. 525-531.

    10.Lee, K. L., Pan, W. F. and Kuo, J. N., 2001, “ The Influence of the Diameter-to-Thickness Ratio on the Stability of Circular Tubes under Cyclic Bending, ” International Journal of Solids and Structures, Vol.38, pp. 2401-2413.

    11.Lee, K. L., and Pan, W. F., 2001, “ Viscoplastic Collapse of Titanium Alloy Tube under Cyclic Bending, ” Structural Engineering and Mechanics – an International Journal, Vol. 11, No.3, pp. 315-324.

    12.Elchalakani, M., Zhao, X. L., Grzebieta, R.H., 2001, “ Concrete-filled circular steel tubes subjected to pure bending, ” Journal of Constructional Steel Research, Vol. 57 pp. 1141-1168.

    13.Lee, K. L. and Pan, W. F., 2002, “ Pure Bending Creep of SUS 304 Stainless Steel Tuber, ” Steel and Composite Structures - an International Journal, Vol. 2, No.6, pp. 461-474.

    14.Lee, K. L., Pan, W. F. and Hsu, C. M., 2004, “ Experimental and Theoretical Evaluations of the Effect between Diameter-to-Thickness Ratio and Curvature-Rate on the Stability of Circular Tubes under Cyclic Bending , ” JSME International Journal, Series A, Vol. 47, No.2, pp. 212-222.

    15.Lee, K. L., Shie, R. F. and Chang, K. H., 2005, “ Experimental and Theoretical Investigation of the Response and Collapse of 316L Stainless Steel Tubes Subjected to Cyclic Bending, ” JSME International Journal, Series A , Vol. 48, No.3, pp. 155-162 .

    16.陳信嘉,2006,「不同內直徑及外直徑SUS 304不銹鋼管在循環彎曲負載下力學行為及皺曲損壞之實驗分析」,國立成功大學工程科學研究所碩士論文。

    17.陳立銓,2007,「不同內外直徑圓管在循環彎曲負載下力學行為及皺曲損壞之分析」,國立成功大學工程科學研究所碩士論文。

    下載圖示 校內:2009-06-26公開
    校外:2009-06-26公開
    QR CODE