| 研究生: |
范揚東 Fan, Yang-tung |
|---|---|
| 論文名稱: |
尖銳凹槽薄壁管在循環彎曲負載下力學行為和皺曲損壞之研究 The Mechanical Behavior and Buckling Failure of Sharp-Notched Thin-Walled Tubes under Cyclic Bending |
| 指導教授: |
潘文峰
Pan, Wen-feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 皺曲 、硬化 、橢圓化 |
| 外文關鍵詞: | buckling, hardening, ovalization |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要針對五種不同尖銳凹槽深度的SUS304不銹鋼管做對稱循環彎曲負載實驗,以探討其力學行為與皺曲損壞的關係。實驗係透過彎管試驗機與曲度-橢圓化量測器來進行實驗數據的控制、量測及蒐集。從實驗彎矩-曲度曲線圖中顯示出,在控制曲度做循環彎曲負載時,實驗試件皆有循環硬化的現象產生,且經過反覆的加載與卸載行為後,其迴圈會漸趨於穩定。其次,由實驗橢圓化-曲度的曲線圖發現,橢圓化值會隨著循環彎曲的圈數增加而成棘齒狀的增加,且當橢圓化值增加到某一臨界值時,圓管便會發生皺曲損壞。此外,由實驗曲度-循環圈數的關係圖可看出,控制的曲度越大時,循環圈數就越小。若將上述實驗值置於雙對數座標中,發現五個不同尖銳凹槽深度的試件其上述關係可近似為五條幾乎平行的直線。最後,參考Shaw 和 Kyriakides【2】、Lee等人【11】與陳立銓【17】論文中所提出的理論方程式,並導入尖銳凹槽深度後提出一個可以描述不同尖銳凹槽深度薄壁管在循環彎曲負載時,控制曲度與循環彎曲皺曲圈數關係的理論方程式。在與實驗值做比較後發現,理論分析能充分的描述實驗結果。
This thesis investigates the mechanical behavior and buckling failure of SUS 304 stainless steel tubes with five different sharp-notched lengths subjected to symmetric cycling bending. The tube bending machine and curvature-ovalization measurement apparatus was used to control, measure and collect the experimental data. It can be observed from the experimental moment-curvature curve that the tube exhibits cyclical hardening during the symmetric cycling bending and becomes steady after a few cycles. Next, for the experimental ovalization-curvature curve, the ovalization of the tube cross-section increases in a ratcheting manner with the number of cycles. When the tube ovalization reaches to a critical amount, the tube buckles. In addition, it is shown in the experimental curvature-number of cycles curve that the larger control curvature leads to a fewer amount of the number of cycles. If the aforementioned experimental data plot in a log-log scale, five almost parallel straight lines can be found for five different sharp-notched lengths. Finally, by referring the theoretical formulations proposed by Shaw and Kyriakides【2】, Lee et al.【11】and Chen【17】and including the factor of the sharp-notched lengths, a theoretical formulation was proposed to simulate the relationship between the controlled curvature and the number of cycles to produce buckling. By comparing the theoretical analysis with the experimental data, it is shown that the theoretical formulation can properly simulate the experimental results.
1.Shaw, P. K. and Kyriakides, S., 1985, “ Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending, ” International Journal of Solids and Structures, Vol. 21, pp. 1073-1100.
2.Kyriakides, S. and Shaw, P. K., 1987, “ Inelastic Buckling of Tubes under Cyclic Bending, ” Journal of Pressure Vessel Technology, Vol. 109, pp.169-178.
3.Corona, E. and Kyriakides, S., 1988, “ On the Collapse of Inelastic Tubes under Combined Bending and Pressure, ” International Journal of Solids and Structures, Vol. 24, pp. 505-535.
4.Corona, E. and Kyriakides, S., 1991, “ An Experimental Investigation Degradation and Buckling of Circular Tubes under Cyclic Bending and External Pressure , ” Thin-Walled Structures, Vol. 12, pp. 229-263.
5.Ju, G. T. and Kyriakides, S., 1992, “ Bifurcation Buckling Versus Limit Load Instabilities of Elastic-Plastic Tubes under Bending and External Pressure, ” Journal of Offshore Mechanics and Arctic Engineering, Vol. 113, pp. 43-52.
6.Vaze, P. and Corona, E., 1996, “ Degradation and Collapse of Tube under Cyclic Bending, ” Thin Wall Structures, Vol. 31, pp. 325-341.
7.Pan, W. F., Wang, T. R. and Hsu, C. M., 1998, “ A Curvature-Ovalization Measurement Apparatus for Circular Tubes under Cyclic Bending, ” Experimental Mechanics, Vol. 38, No.2, pp. 99-102.
8.Pan, W. F., Her and Y. S., 1998, “ Viscoplastic Collapse of Thin-Walled Tubes under Cyclic Bending, ” Journal of Engineering Materials and Technology, Vol. 120, pp. 001-004.
9.Pan, W. F. and Fan, C. H., 1998, “ An Experimental Study on the Effect of Curvature-Rate at Preloading Stage on Subsequent Creep or Relaxation of Thin-Walled Tubes under Pure Bending, ” JSME International Journal, Series A, Vol. 41, No.4, pp. 525-531.
10.Lee, K. L., Pan, W. F. and Kuo, J. N., 2001, “ The Influence of the Diameter-to-Thickness Ratio on the Stability of Circular Tubes under Cyclic Bending, ” International Journal of Solids and Structures, Vol.38, pp. 2401-2413.
11.Lee, K. L., and Pan, W. F., 2001, “ Viscoplastic Collapse of Titanium Alloy Tube under Cyclic Bending, ” Structural Engineering and Mechanics – an International Journal, Vol. 11, No.3, pp. 315-324.
12.Elchalakani, M., Zhao, X. L., Grzebieta, R.H., 2001, “ Concrete-filled circular steel tubes subjected to pure bending, ” Journal of Constructional Steel Research, Vol. 57 pp. 1141-1168.
13.Lee, K. L. and Pan, W. F., 2002, “ Pure Bending Creep of SUS 304 Stainless Steel Tuber, ” Steel and Composite Structures - an International Journal, Vol. 2, No.6, pp. 461-474.
14.Lee, K. L., Pan, W. F. and Hsu, C. M., 2004, “ Experimental and Theoretical Evaluations of the Effect between Diameter-to-Thickness Ratio and Curvature-Rate on the Stability of Circular Tubes under Cyclic Bending , ” JSME International Journal, Series A, Vol. 47, No.2, pp. 212-222.
15.Lee, K. L., Shie, R. F. and Chang, K. H., 2005, “ Experimental and Theoretical Investigation of the Response and Collapse of 316L Stainless Steel Tubes Subjected to Cyclic Bending, ” JSME International Journal, Series A , Vol. 48, No.3, pp. 155-162 .
16.陳信嘉,2006,「不同內直徑及外直徑SUS 304不銹鋼管在循環彎曲負載下力學行為及皺曲損壞之實驗分析」,國立成功大學工程科學研究所碩士論文。
17.陳立銓,2007,「不同內外直徑圓管在循環彎曲負載下力學行為及皺曲損壞之分析」,國立成功大學工程科學研究所碩士論文。