簡易檢索 / 詳目顯示

研究生: 廖婉竹
Liauh, Woan Jwu
論文名稱: 濺鍍高C軸取向氮化鈧鋁薄膜於類碳鑽/矽基板應用於表面聲波元件之特性與壓電性質研究
Characterization and Piezoelectric Properties of Highly C-axis ScxAl1-xN/DLC/Si Layered Structure of Surface Acoustic Wave Devices Application
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 氮化鈧鋁類碳鑽/矽壓電係數多層結構表面聲波元件
外文關鍵詞: ScAlN thin films, DLC, Co-sputtering, Piezoelectricity
相關次數: 點閱:122下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊的發展,應用於射頻頻段的表面聲波元件往高頻、寬頻寬、高散熱發展,但傳統使用的單晶表面聲波基板材料,其波速低、散熱差、價格昂貴,使其發展受限,近年來,壓電多層膜表面聲波元件得到廣泛的關注及研究,這是因為表面聲波元件可以透過選用不同特性材料組成的多層結構可以顯現各自材料的優勢,不僅提升元件性能、實現電路整合並且能縮小元件尺寸、降低成本,研製出新型元件,拓寬其應用範圍。
    類碳鑽/矽基板具有比傳統單晶基板優良的波速且散熱較好,製程相對於鑽石容易,並可與半導體製程整合,而氮化鋁薄膜雖然擁有很高的表面聲波波速、高居禮溫度,但是其機電耦合係數(K2)僅有0.3 %,並不足夠應用在未來無線通訊及物聯網上,故在高C軸取向之wurtzite氮化鋁薄膜內加入鈧之後,由於薄膜結構的轉變,利於誘發極化,使壓電係數增加,即代表K2增加。
    因此本研究利用雙靶共鍍的方式濺鍍氮化鈧鋁薄膜於類碳鑽/矽基板上,將探討鈧元素添加不同的含量,對氮化鈧鋁的C軸優選取向之影響及其相變化,不同的薄膜性質將顯著影響薄膜之壓電特性,並找出具最佳壓電係數(d33)的氮化鈧鋁薄膜。結合各材料特點,研製出一創新多層結構壓電材料。
    實驗結果顯示,隨著鈧含量增加,氮化鈧鋁薄膜的d33值會增加,至30.33 % Sc時達到最大值11.54 pC/N,約為純氮化鋁(0.73 pC/N)的15倍之多,主要是因為薄膜結構產生轉變而使壓電性質有所變化,同時由於薄膜結構的改變,造成表面粗糙度的提升。一般而言,C軸取向為控制壓電特性的主因,其結晶性愈好、C軸方向性愈強烈的結構,代表其壓電性質愈優良,具有應用於高頻表面聲波元件的潛力。

    We report deposition of pure AlN and ScxAl1-xN thin films with different Sc concentration on DLC/Si substrate by RF and DC reactive magnetron co-sputtering method by using Al and Sc as targets. The X-ray diffraction (XRD) results showed that the films have high c-axis-orientation. Electron probe microanalyzer (EPMA) analysis reveals the presence of scandium atoms reduce the space occupied by aluminum atoms, leading to lattice distortion during the phase transition. The SEM cross-section results showed that the ScxAl1-xN films are highly aligned along c-axis and have columnar like morphology. The top view of SEM results indicated that the new phase formation above Sc 30.33 %, however no new peak appeared in the XRD pattern. The piezoelectric coefficient (d33) of ScxAl1-xN thin films are measured and the highest value (11.54 pC/N) is achieved at x= 30.33 % increasing 14 times, as that with AlN/DLC/Si, 0.73 pC/N. ScxAl1-xN films on DLC/Si substrate have a great potential to be applied on high frequency SAW devices in the future.

    摘要 I Extended Abstract II 致謝 XX 總目錄 XXII 圖目錄 XXV 表目錄 XXIX 第一章、緒論 1 1-1. 前言 1 1-2. 研究動機與目的 2 第二章、文獻回顧 9 2-1. 電漿 9 2-1-1. 電漿的產生與機制 9 2-1-2. 電漿的特性 13 2-2. 濺鍍 13 2-2-1. 濺鍍原理 13 2-2-2. 反應式濺鍍 17 2-2-3. 射頻磁控濺鍍 21 2-3. 薄膜的成核與成長 21 2-4. 類碳鑽(DLC)膜之結構與特性 22 2-5. 氮化鋁之結構與特性 23 2-6. 高C軸取向之氮化鋁薄膜應用 24 2-7. 氮化鈧鋁合金薄膜 30 2-8. 壓電性及壓電係數(d33) 31 2.9.表面聲波介紹 39 2-10. 表面聲波元件基本構造及原理 39 2.11 表面聲波元件的重要參數 41 2-11-2. 表面聲波波速(Vp) 41 2-11-3. 機電耦合係數(K2) 41 2-12. 表面聲波元件應用與發展 42 第三章、研究方法與實驗步驟 46 3-1. 實驗流程圖 46 3-2. 實驗材料 46 3-3. 實驗設備 46 3-4. 濺鍍的步驟與條件 49 3-4-1. 基材前處理 49 3-4-2. 濺鍍流程 49 3-5. 鍍層的分析 51 3-5-1. 薄膜厚度及濺鍍速率的分析 51 3-5-2. 薄膜晶體結構分析 51 3-5-3. 薄膜表面及橫截面微結構觀察 51 3-5-4. 表面形態與粗糙度分析 52 3-5-5. 成分與化學鍵結分析 52 3-5-6. 薄膜壓電特性分析 53 3-5-7. 機械性質及奈米壓痕試驗分析 53 第四章、結果與討論 55 4-1. 商用類碳鑽/矽基板之特性分析 55 4-1-1. 晶體結構分析 55 4-1-2. 表面形貌與粗糙度分析 55 4-1-3. 機械性質分析 55 4-1-4. 化學鍵結分析 55 4-2. 製備C軸取向(002)氮化鈧鋁薄膜於類碳鑽/矽基板 60 4-2-1. 反應濺鍍速率 60 4-2-2. 化學成份分析 60 4-2-3. 晶體結構分析 60 4-2-4. 表面形貌及橫截面膜厚分析 73 4-2-5. 橫截面微結構分析 73 4-2-6. 表面粗糙度分析 74 4-2-7. 元素分佈及化學鍵結分析 84 4-2-8. 壓電特性分析 90 第五章、 結論 94 參考文獻 96

    [1]潘峰, "聲表面波材料與器件," 科學出版社, 2012.
    [2]L. Rayleigh, "On Waves Propagated along the Plane Surface of an Elastic Solid," Proceedings of the London Mathematical Society, vol. s1-17, pp. 4-11, 1885.
    [3]R. M. White and F. W. Voltmer, "Direct Piezoelectric Coupling to Surface Elastic Waves," Applied Physics Letters, vol. 7, p. 314, 1965.
    [4]陳聖詠, "行動通訊與傳輸網路(第二版)," 台灣: 全華圖書, 2012.
    [5]H. L. W. C. C. M. Lueng, C. Surya and C. L. Choy, "Piezoelectric coefficient of aluminum nitride and gallium nitride," Journal of Applied Physics, vol. 88, p. 5360, 2000.
    [6]R. W. NOSKER and P. MARK, "Polar Surface of Wurtzite and Zincblende Lattices," SURFACE SCIENCE vol. 19, pp. 291-317 1970.
    [7]K. S. Kao, C. C. Cheng, Y. C. Chen, and Y. H. Lee, "The characteristics of surface acoustic waves on AlN/LiNbO 3 substrates," Applied Physics A: Materials Science & Processing, vol. 76, pp. 1125-1127, 2003.
    [8]L. W. Sean Wu, Jia-Hua Chang, Feng-Chih Chang, "Temperature coefficients of SAW velocity for AlN thin film sputtered on ST-X quartz," Materials Letters, vol. 51, pp. 331-335, 2001.
    [9]C. Caliendo and P. Imperatori, "Structural, optical, and acoustic characterization of high-quality AlN thick films sputtered on Al2O3(0001) at low temperature for GHz-band electroacoustic devices applications," Journal of Applied Physics, vol. 96, p. 2610, 2004.
    [10]D. Liufu and K. C. Kao, "Piezoelectric, dielectric, and interfacial properties of aluminum nitride films," Journal of Vacuum Science & Technology A, vol. 16, pp. 2360-2366, 1998.
    [11]M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, "Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering," Adv Mater, vol. 21, pp. 593-6, Feb 2 2009.
    [12]S. Zhang, R. Xia, L. Lebrun, D. Anderson, and T. R. Shrout, "Piezoelectric materials for high power, high temperature applications," Materials Letters, vol. 59, pp. 3471-3475, 2005.
    [13]H. J. Lee, S. Zhang, Y. Bar-Cohen, and S. Sherrit, "High temperature, high power piezoelectric composite transducers," Sensors (Basel), vol. 14, pp. 14526-52, 2014.
    [14]R. C. Turner, P. A. Fuierer, R. E. Newnham, and T. R. Shrout, "Materials for high temperature acoustic and vibration sensors: A review," Applied Acoustics, vol. 41, pp. 299-324, 1994.
    [15]M. B. Assouar, O. Elmazria, M. El Hakiki, and P. Alnot, "Study of Acoustical and Optical Properties of Aln Films for Saw and Baw Devices: Correlation between These Properties," Integrated Ferroelectrics, vol. 82, pp. 45-54, 2006.
    [16]J.-H. Song, J.-L. Huang, T. Omori, J. C. Sung, S. Wu, H.-H. Lu, et al., "Growth of highly c-axis oriented (B, Al)N film on diamond for high frequency surface acoustic wave devices," Thin Solid Films, vol. 520, pp. 2247-2250, 2012.
    [17]S. Zhang, D. Holec, W. Y. Fu, C. J. Humphreys, and M. A. Moram, "Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides," Journal of Applied Physics, vol. 114, p. 133510, 2013.
    [18]M. Akiyama, K. Kano, and A. Teshigahara, "Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films," Applied Physics Letters, vol. 95, p. 162107, 2009.
    [19]M. Akiyama, K. Umeda, A. Honda, and T. Nagase, "Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films," Applied Physics Letters, vol. 102, p. 021915, 2013.
    [20]F. Tasnadi, B. Alling, C. Hoglund, G. Wingqvist, J. Birch, L. Hultman, et al., "Origin of the anomalous piezoelectric response in wurtzite Sc(x)Al(1-x)N alloys," Phys Rev Lett, vol. 104, p. 137601, Apr 2 2010.
    [21]C. Tholander, F. Tasnádi, I. A. Abrikosov, L. Hultman, J. Birch, and B. Alling, "Large piezoelectric response of quarternary wurtzite nitride alloys and its physical origin from first principles," Physical Review B, vol. 92, 2015.
    [22]A. Zukauskaite, G. Wingqvist, J. Palisaitis, J. Jensen, P. O. A. Persson, R. Matloub, et al., "Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1−xN thin films," Journal of Applied Physics, vol. 111, p. 093527, 2012.
    [23]G. Wingqvist, F. Tasnádi, A. Zukauskaite, J. Birch, H. Arwin, and L. Hultman, "Increased electromechanical coupling in w−ScxAl1-xN," Applied Physics Letters, vol. 97, p. 112902, 2010.
    [24]楊錦章, "基礎濺鍍電漿," 電子發展月刊(68期), vol. 72, 1983.
    [25]王建義, "薄膜工程學," 全華圖書股份有限公司 2006.
    [26]S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, "Handbook of Plasma Processing Technology," Park Ridge, New Jersey: Noyes Publications, 1989.
    [27]麻蒔立男, "薄膜," 瑞昇, 2012.
    [28]田民波, "薄膜技術與薄膜材料," 五南圖書出版股份有限公司, 2007.
    [29]L. Davis, "Properties of transparent conducting oxides deposited at room temperature," Thin Solid Films, vol. 236, pp. 1-5, 1993.
    [30]D. M. Mattox, "Particle bombardment effects on thin‐film deposition: A review," Journal of Vacuum Science & Technology A, vol. 7, 1989.
    [31]T. S. Santra, T. K. Bhattacharyya, P. Patel, F. G. Tseng, and T. K. Barik, " Diamond, Diamond-Like Carbon (DLC) and diamond like nanocomposite thin films for MEMS applications," Microelectromechanical Systems and Devices, 2012.
    [32]顏瑞盈, "中間層與表面性質對類鑽碳薄膜機械性質影響之研究," 大同大學機械工程研究所碩士論文, 2005.
    [33]M. P. Siegal, T. A. Friedmann, J. P. Sullivan, J. Mikkalson, and F. Dominguez, "Diamond and DLC films for advanced electronic applications," Albuquerque, New Mexico. UNT Digital Library, 1996.
    [34]N. Paik, "Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source," Surface and Coatings Technology, vol. 200, pp. 2170-2174, 2005.
    [35]E. Ruiz and S. Alvarez, "Electronic structure and properties of AlN," Physical Review B, vol. 49, pp. 7115-7123, 1994.
    [36]R. R. Clemente, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand, et al., "Morphological properties of chemical vapour deposited AlN films," Journal of Crystal Growth, vol. 133, pp. 59-70, 1993.
    [37]T. B. Jackson, A. V. Virkar, K. L. More, J. R. B. Dinwiddie, and R. A. Cutler, "High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors," Journal of the American Ceramic Society, vol. 80, pp. 1421-1435, 1997.
    [38]O. Elmazria, V. Mortet, M. El Hakiki, M. Nesladek, and P. Alnot, "High velocity SAW using aluminum nitride film on unpolished nucleation side of free-standing CVD diamond," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 50, p. 701, 2003.
    [39]M. Clement, L. Vergara, J. Sangrador, E. Iborra, and A. Sanz-Hervas, "SAW characteristics of AlN films sputtered on silicon substrates," Ultrasonics, vol. 42, pp. 403-7, Apr 2004.
    [40]M. Ishihara, S. J. Lia, H. Yumotoa, K. Akashib, and Y. Ide, "Control of preferential orientation of AlN films prepared by the reactive sputtering method.pdf>," Thin Solid Films, vol. 316, pp. 152-157, 1998.
    [41]M. Akiyama, C.-N. Xu, K. Nonaka, K. Shobu, and T. Watanabe, "Statistical approach for optimizing sputtering conditions of highly oriented aluminum nitride thin films," Thin Solid Films, vol. 315, pp. 62–65, 1998.
    [42]L. SeanWU, Feng-Chih CHANG and Jia-Hua CHANG, "Temperature Compensation with AlN Film on Y-128°LiNbO3," Jpn. J. Appl. Phys, vol. 40, pp. L471–L473, 2001.
    [43]S. Shimada, M. Yoshimatsu, H. Nagai, M. Suzuki, and H. Komaki, "Preparation and properties of TiN and AlN films from alkoxide solution by thermal plasma CVD method," Thin Solid Films, vol. 370, pp. 137-145, Jul 17 2000.
    [44]R.D. Vispute, J. Narayan, and J. D. Budai, "High quality optoelectronic grade epitaxial AlN films on α-Al2O3, Si and 6H-SiC by pulsed laser deposition," Thin Solid Films, vol. 299, pp. 94-103, 1997.
    [45]S. M. C. Miranda, N. Franco, E. Alves, and K. Lorenz, "Cd ion implantation in AlN," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 289, pp. 43-46, Oct 15 2012.
    [46]K. V. Smyrnova, A. A. Demianenko, K. A. Dyadyura, A. S. Radko, A. V. Pshyk, O. V. Kuzovlev, et al., "The Influence of the Ion Implantation of Au- to the Microstructure of the Amorphous-nanocrystaline AlN-TiB2-TiSi2," Journal of Nano- and Electronic Physics, vol. 7, 2015.
    [47]J. K. Kim and S. H. Jeong, "Effects of deposition parameters on AlN film growth using reactive DC magnetron sputtering," Journal of the Korean Physical Society, vol. 38, pp. 19-24, Jan 2001.
    [48]M. Garcia-Mendez, S. Morales-Rodriguez, R. Machorro, and W. De La Cruz, "Characterization of ALN thin films deposited by DC reactive magnetron sputtering," Revista Mexicana De Fisica, vol. 54, pp. 271-278, Aug 2008.
    [49]M. A. Moreira, I. Doi, J. F. Souza, and J. A. Diniz, "Electrical characterization and morphological properties of AlN films prepared by dc reactive magnetron sputtering," Microelectronic Engineering, vol. 88, pp. 802-806, May 2011.
    [50]T. Shiosaki, T. Yamamoto, T. Oda, and A. Kawabata, "Low-Temperature Growth of Piezoelectric Aln Film for Surface and Bulk Wave Transducers by Rf Reactive Planar Magnetron Sputtering," Ieee Transactions on Sonics and Ultrasonics, vol. 28, pp. 389-389, 1981.
    [51]A. Kale, R. S. Brusa, and A. Miotello, "Structural and electrical properties of AlN films deposited using reactive RF magnetron sputtering for solar concentrator application," Applied Surface Science, vol. 258, pp. 3450-3454, Feb 1 2012.
    [52]X. P. Kuang, H. Y. Zhang, G. G. Wang, L. Cui, C. Zhu, L. Jin, et al., "AlN films prepared on 6H-SiC substrates under various sputtering pressures by RF reactive magnetron sputtering," Applied Surface Science, vol. 263, pp. 62-68, Dec 15 2012.
    [53]X. P. Kuang, H. Y. Zhang, G. G. Wang, L. Cui, C. Zhu, L. Jin, et al., "Effect of deposition temperature on the microstructure and surface morphology of c-axis oriented AlN films deposited on sapphire substrate by RF reactive magnetron sputtering," Superlattices and Microstructures, vol. 52, pp. 931-940, Nov 2012.
    [54]T. Kumada, M. Ohtsuka, and H. Fukuyama, "Influence of substrate temperature on the crystalline quality of AlN layers deposited by RF reactive magnetron sputtering," Aip Advances, vol. 5, Jan 2015.
    [55]N. Farrer and L. Bellaiche, "Properties of hexagonal ScN versus wurtzite GaN and InN," Physical Review B, vol. 66, 2002.
    [56]N. Takeuchi, "First-principles calculations of the ground-state properties and stability of ScN," Physical Review B, vol. 65, 2002.
    [57]R. Deng, S. R. Evans, and D. Gall, "Bandgap in Al1−xScxN," Applied Physics Letters, vol. 102, p. 112103, 2013.
    [58]Z. Gu, J. H. Edgar, J. Pomeroy, M. Kuball, and D. W. Coffey, "Crystal growth and properties of scandium nitride," journal of Materials Science-Materials in Electronics, vol. 15, pp. 555–559, 2004.
    [59]C. Höglund, "Growth and Phase Stability studies of expitaxial Sc-Al-N and Ti-Al-N " Linköping Studies in Science and Technology, 2010.
    [60]C. Höglund, J. Birch, B. r. Alling, J. Bareño, Z. Czigány, P. O. A. Persson, et al., "Wurtzite structure Sc1−xAlxN solid solution films grown by reactive magnetron sputter epitaxy: Structural characterization and first-principles calculations," Journal of Applied Physics, vol. 107, p. 123515, 2010.
    [61]C. Höglund, J. Bareño, J. Birch, B. r. Alling, Z. Czigány, and L. Hultman, "Cubic Sc1-xAlxN solid solution thin films deposited by reactive magnetron sputter epitaxy onto ScN(111)," Journal of Applied Physics, vol. 105, p. 113517, 2009.
    [62]A. Alsaad and A. Ahmad, "Piezoelectricity of ordered (ScxGa1-xN) alloys from first principles," The European Physical Journal B, vol. 54, pp. 151-156, 2006.
    [63]P. Curie and J. Curie, "Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined Faces," Bull. Soc. Min. de France, vol. 3, pp. 90-93, 1880.
    [64]K. Hunkins and J. T. Kuo, "Rayleigh and Love Wave Dispersion in Tonga-Fiji Region," Journal of Geophysical Research, vol. 67, pp. 3567-&, 1962.
    [65]S. Barth, H. Bartzsch, D. Glöß, P. Frach, T. Modes, O. Zywitzki, et al., "Magnetron sputtering of piezoelectric AlN and AlScN thin films and their use in energy harvesting applications," Microsystem Technologies, vol. 22, pp. 1613-1617, 2016.
    [66]A. Žukauskaitė, E. Broitman, P. Sandström, L. Hultman, and J. Birch, "Nanoprobe mechanical and piezoelectric characterization of ScxAl1−xN(0001) thin films," physica status solidi (a), vol. 212, pp. 666-673, 2015.
    [67]J. L. Sánchez-Rojas, R. Brama, P. M. Mayrhofer, A. Bittner, and U. Schmid, "High temperature stability of ScxAl1-xN (x=0.27) thin films," vol. 9517, p. 95171C, 2015.
    [68]G. W. Auner, F. Jin, V. M. Naik, and R. Naik, "Microstructure of low temperature grown AlN thin films on Si(111)," Journal of Applied Physics, vol. 85, pp. 7879-7883, 1999.
    [69]J. F. Moulder, W. F.Stickle, P. E. Sobol, and K. D. Bomben, "Handbook of X-ray Photoelectron Spectroscopy," Physical Electronics, Inc, 1992.
    [70]C. Constantin, H. Al-Brithen, M. B. Haider, D. Ingram, and A. R. Smith, "ScGaN alloy growth by molecular beam epitaxy: Evidence for a metastable layered hexagonal phase," Physical Review B, vol. 70, p. 193309, 2004.
    [71]J. L. Sánchez-Rojas, R. Brama, S. Barth, H. Bartzsch, D. Gloess, P. Frach, et al., "Influence of process parameters on properties of piezoelectric AlN and AlScN thin films for sensor and energy harvesting applications," vol. 9517, p. 951704, 2015.
    [72]N. Farrer and L. Bellaiche, "Properties of hexagonal ScN versus wurtzite GaN and InN," physical Review B, vol. 66, p. 201203, 2002.
    [73]H. Berkok, A. Tebboune, A. Saim, and A. H. Belbachir, "Structural and electronic properties of ScxAl1−xN: First principles study," Physica B: Condensed Matter, vol. 411, pp. 1-6, 2013.

    下載圖示 校內:2019-07-22公開
    校外:2019-07-22公開
    QR CODE