簡易檢索 / 詳目顯示

研究生: 葉秀汝
Ye, Siou-Ru
論文名稱: 探討一個新的胚胎腫瘤幹細胞標記
Study of a novel oncofetal tumor-stem-cell marker
指導教授: 何中良
Ho, Chung-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 91
中文關鍵詞: 腫瘤胚基因腫瘤幹細胞腫瘤胚胎幹細胞標記
外文關鍵詞: Oncofetal gene, Tumor stem cell, oncofetal tumor stem marker, Lin28B
相關次數: 點閱:134下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在正常狀態下,胚胎發育過程中參與的基因在出生後便不再表現,可是當腫瘤生成過程中可能會再度被啟動,這類的基因有人稱它為腫瘤胚 (oncofetal)基因。在臨床應用上,這類的基因是很好的診斷指標,藉由抽血偵測此類的指標基因即可早期發現腫瘤形成,甚至在腫瘤形成前及早預防。而本實驗室基於如此的概念之下,從生物資訊龐大的EST (Expressed Sequence Taq, 表現序列標幟) 資料庫中,找出有可能的腫瘤胚基因,之後藉由RT-PCR的方式篩選出具有腫瘤胚表現型的基因進行研究。而在此篩選中,發現了Lin28B此基因,在文獻裡得知其為一個具潛力的腫瘤幹細胞標記(tumor stem cell marker)。而我們實驗室隨後也去證實它的腫瘤胚幹細胞 (Oncofetal stemness) 性質以及去測試它成為循環腫瘤胚胎幹細胞標記 (Circulation oncofetal tumor-stem–cell-like marker) 的潛在性。最後成功地證實它的確是一個良好的循環腫瘤胚胎幹細胞標記,並且可以利用它將初期 (low-stage)的肝癌 (HCC) 病人分為兩種不同復發情況的族群。而這樣的Marker由於其腫瘤胚的特性:在正常成人組織中不表現或表現量低,相較於一般Marker而言干擾性低,此外又可以將腫瘤細胞區分成兩個次族群:Tumor cell、Tumor stem cell。Tumor-stem-cell被認為具有stem cell self-renew的能力,容易造成轉移的發生。
    基於上述,我們結合生物資訊學及一些實驗欲找尋一個具有潛力會在胚胎幹細胞中表現的腫瘤胚基因。而其中一個具有潛力的基因為U41 (Unknown 41),為本篇論文研究的主題,它是一個已知序列但生物功能未知的基因,PCR篩選結果發現它幾乎在所有被測腫瘤細胞株中表現,但是在正常組織中,僅有某些器官 (例如:胎兒時期的腦、正常的腦、骨髓、男性生殖腺) 表現量較多,其餘器官雖然有表現但明顯減少,而周邊血也幾乎檢測不到。在臨床檢體腫瘤非腫瘤配對檢測結果顯示此基因具有類似腫瘤胚基因的表現型。此外在iPS (Induced pluripotent stem cell) 細胞中也有檢測到U41的表現,總和以上結論我們認定U41極有潛力為一個oncofetal tumor-stem-cell marker,我們將會探討其對於stemness、EMT相關基因的影響。
    在本篇研究首先利用RT-PCR來檢測U41四種不同shRNAs的knockdown效力,在結果中的確顯示有knock-down效果,但再利用Real-time PCR 再次檢測發現其實四種不同的shRNA皆沒有knockdown效果,探究其原因為一般傳統PCR只能根據最終PCR濃度來回推模板濃度,無法像real-time PCR一樣及時定量,在每一個cycle中監控放大的濃度。其次在HepG2 Lin28B over-expression cell中和control相比U41的RNA表現量雖然沒有差異性,但是在PLC/PRF/15 EpCAM enrich cell中,U41的RNA表現量比起control組來說上升了約10倍左右,再次證明U41的確和stemness是有相關的。另一方面本篇研究成功clone U41全長,以及完成和EGFP 或是Myc-tag fusion的蛋白,雖然在western blot 中尚未偵測到其蛋白表現,但是在螢光顯微鏡中有觀察到少量的U41-EGFP的螢光表現,推測是片段太大不容易以短暫感染使其表現。
    目前對於U41的功能始終尚未釐清,有待後續繼續研究解謎。

    Our laboratory devotes to the study of unknown oncofetal genes (genes expressed in embryos or fetuses, down-regulated or undetectable in adult tissues, and re-expressed in tumors). We used a bioinformatics algorithm to screen for potential oncofetal genes using the expressed sequence tag (EST) database. One of these genes, Lin28 homolog B (LIN28B), had been reported to be a potential marker of tumor stem cells. We sought to verify the oncofetal-stemness characters of LIN28B and test its potential as a circulating tumor-stem-cell-like marker in adult HCC patients. The results showed that, by testing LIN28B expressed in circulating cells, we could further stratify low-stage HCC patients into two groups with significantly different recurrence curves.
    The results of LIN28B demonstrated the potential significances of oncofetal tumor-stem-cell markers. This kind of marker is low background and can divide tumor cell into two groups: tumor cell and tumor stem cell. Tumor stem cell is thought to cause metastasis by the ability of self-renewal. Therefore we searched for potential oncofetal genes that are also expressed in embryonic stem cells through a combined bioinformatics and experimental approach. One of the candidate genes is U41. Our experimental results revealed that U41 is present in high volumes in newborn and embryos of rats, but no or lower volumes in mature ones. It is overexpressed in lung and liver cancers, but not detected in peripheral blood cells, making it a potentially ideal oncofetal marker.
    This study aims to validate U41 as a novel oncofetal tumor-stem-cell marker. We will investigate the functions and characteristics of U41 by over-expression or knock-down experiment using human cell lines. Assays regarding to oncogenesis and stem cell characteristics will be performed. In the knock-down part; the stable pools with U41 knock-down in a human liver cancer cell line (HepG2) and a lung cancer cell line (A549) were established. The mRNA levels of U41 in stable knock-down pools of HepG2 and A549 cell lines were tested by RT-PCR. In the result it seems that the shRNAs are workable. However, we use quantitative real-time PCR to validate it again; we found the shRNAs are not as useful as in knock-down U41.
    In the overexpression part; the full-length of U41 in pSP72 vector was constructed successfully. Since the commercially available antibodies of U41 do not work for Western blotting, we subsequently fused full-length U41 with the EGFP gene or a Myc tag in pMSCV (the retrovirus vector). In fluorescence microscopy, U41-EGFP showed some expression, indicating that the U41-EGFP construct should be intact but its expression was low. Although we still cannot detect the U41 which fused with Myc or EGFP in protein level, we would make retrovirus to transfect cell that provide more efficiency than transient transfection.
    In summary, the function of U41 is still unknown which needs further study.

    摘要 I Abstract III 誌謝 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 (一) Oncofetal protein 1 (二) Wnt/β-catenin pathway 1 (三) Circulating tumor cells (CTCs) 2 (四) Tumor stem cell 3 (五) Expressed Sequence Tags (EST) 4 (六) 生物資訊方面 5 1. 生物資料庫(Bio-database)的建立 5 2. 利用生物資訊方法尋找新穎的Oncofetal gene 6 3. 利用生物資訊方法尋找新穎的Wnt/β-catenin標靶基因 7 (七) Lin28B an oncofetal tumor-stem-cell–like gene 8 (八) 找尋新的Oncofetal tumor-stem-cell-like gene 9 (九) U41 10 (十) Bioinformatics 11 1. National Center for Biotechnology Information (NCBI) 11 2. Ensemble 11 3. UniProt 12 4. PSORT II & CELLO 12 (十一) 實驗目的 12 第二章 實驗材料及方法 14 (一) 基本分子生物技術 14 (二) 細胞的培養程序 20 (三) 細胞相關實驗 21 (四) 西方點墨法 23 (五) 磁珠分離EpCAM+ & EpCAM- cells 28 (六) 及時定量聚合酶連鎖反應 (Real-time PCR) 28 第三章 結果 30 (一) 抑制內生性U41做功能性探討 (Functional assay) 30 1. 建立stable pool及篩選有效的U41 ShRNA抑制序列 30 2. Functional Assay 30 3. 利用Real-time PCR確認U41 knock-down stable pool 31 (二) U41 Full-length Clone 32 1. U41 Full-length cloning原始設計 32 2. 測試primer pairs可行、PCR產物大小調整、PCR enzyme選擇 32 3. 解決isoform 2問題 33 4. Overlap PCR 33 5. 解決mutation問題 34 6. 將各小片段連接成U41 Full-length clone 34 7. U41 Full-length 加上Myc tag 35 第四章 討論 37 (一) 抑制內生性U41做功能性探討 (Functional assay) 37 1. 建立stable pool及篩選有效的U41 ShRNA抑制序列 37 2. 探討HepG2 Lin28B over-expressed cell induces stemnes對U41的影響 37 3. PLC/PRF/15磁珠分離 EpCAM- & EpCAM+ cell對U41的影響 38 (二) U41 full –length clone 38 1. U41 Full-length clone 38 2. Isoform 2 39 3. SNP 39 (三) U41 over-expression western blot 39 第五章 參考文獻 41 第六章 Table 46 第七章 Figure 56 第八章 附錄 84

    1. Alexander, P., Fetal antigens in cancer. Can Med Assoc J., 1973. 108: p. 817-818.
    2. Monk, M. and C. Holding, Human embryonic genes re-expressed in cancer cells. Oncogene, 2001. 20(56): p. 8085-91.
    3. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012. 487(7407): p. 330-7.
    4. Wanitsuwan, W., et al., Overall expression of beta-catenin outperforms its nuclear accumulation in predicting outcomes of colorectal cancers. World J Gastroenterol, 2008. 14(39): p. 6052-9.
    5. Boyer, A., A.K. Goff, and D. Boerboom, WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol Metab, 2010. 21(1): p. 25-32.
    6. Rask, K., et al., Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta. Br J Cancer, 2003. 89(7): p. 1298-304.
    7. Gatcliffe, T.A., et al., Wnt signaling in ovarian tumorigenesis. Int J Gynecol Cancer, 2008. 18(5): p. 954-62.
    8. Vermeulen, L., et al., Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A, 2008. 105(36): p. 13427-32.
    9. Takebe, N., et al., Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol, 2011. 8(2): p. 97-106.
    10. Ghossein, R.A., S. Bhattacharya, and J. Rosai, Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin Cancer Res, 1999. 5(8): p. 1950-60.
    11. Franz, M., et al., Complex formation of the laminin-5 gamma2 chain and large unspliced tenascin-C in oral squamous cell carcinoma in vitro and in situ: implications for sequential modulation of extracellular matrix in the invasive tumor front. Histochem Cell Biol, 2006. 126(1): p. 125-31.
    12. Kikkawa, H., H. Tsukada, and N. Oku, Usefulness of positron emission tomographic visualization for examination of in vivo susceptibility to metastasis. Cancer, 2000. 89(7): p. 1626-33.
    13. Mukai, M., Occult neoplastic cells and malignant micro-aggregates in lymph node sinuses: review and hypothesis. Oncol Rep, 2005. 14(1): p. 173-5.
    14. Moreno, J.G., et al., Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology, 2005. 65(4): p. 713-8.
    15. Pantel, K., R.H. Brakenhoff, and B. Brandt, Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer, 2008. 8(5): p. 329-40.
    16. Elshimali, Y.I. and W.W. Grody, The clinical significance of circulating tumor cells in the peripheral blood. Diagn Mol Pathol, 2006. 15(4): p. 187-94.
    17. Cristofanilli, M., et al., Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol, 2005. 23(7): p. 1420-30.
    18. Shipitsin, M., et al., Molecular definition of breast tumor heterogeneity. Cancer Cell, 2007. 11(3): p. 259-73.
    19. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008. 8(10): p. 755-68.
    20. Al-Hajj, M. and M.F. Clarke, Self-renewal and solid tumor stem cells. Oncogene, 2004. 23(43): p. 7274-82.
    21. Jamieson, C.H., I.L. Weissman, and E. Passegue, Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell, 2004. 6(6): p. 531-3.
    22. Armanios, M. and C.W. Greider, Telomerase and cancer stem cells. Cold Spring Harb Symp Quant Biol, 2005. 70: p. 205-8.
    23. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-11.
    24. Visvader, J.E. and G.J. Lindeman, Stem cells and cancer - the promise and puzzles. Mol Oncol, 2010. 4(5): p. 369-72.
    25. Clevers, H., The cancer stem cell: premises, promises and challenges. Nat Med, 2011. 17(3): p. 313-9.
    26. Hirschmann-Jax, C., et al., A distinct "side population" of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle, 2005. 4(2): p. 203-5.
    27. Hirschmann-Jax, C., et al., A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A, 2004. 101(39): p. 14228-33.
    28. Hussenet, T., et al., An adult tissue-specific stem cell molecular phenotype is activated in epithelial cancer stem cells and correlated to patient outcome. Cell Cycle, 2010. 9(2): p. 321-7.
    29. Vassiliou, G.S., et al., Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet, 2011. 43(5): p. 470-5.
    30. Gudjonsson, T. and M.K. Magnusson, Stem cell biology and the cellular pathways of carcinogenesis. Apmis, 2005. 113(11-12): p. 922-9.
    31. Chaffer, C.L., et al., Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A, 2011. 108(19): p. 7950-5.
    32. Kelly, P.N., et al., Tumor growth need not be driven by rare cancer stem cells. Science, 2007. 317(5836): p. 337.
    33. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401.
    34. Fang, D., et al., A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 2005. 65(20): p. 9328-37.
    35. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
    36. Ma, S., et al., Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 2007. 132(7): p. 2542-56.
    37. Li, C., et al., Identification of pancreatic cancer stem cells. Cancer Res, 2007. 67(3): p. 1030-7.
    38. O'Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-10.
    39. Adams, M.D., et al., Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991. 252(5013): p. 1651-6.
    40. 周靖恆, 結合生物資訊的方法探討腫瘤相關基因在人類腎臟癌中的表現, in 分子醫學研究所. 2005, 國立成功大學: 台南市. p. 75.
    41. Severin, S.E., et al., Antitumor activity of conjugates of the oncofetal protein alpha-fetoprotein and phthalocyanines in vitro. Biochem Mol Biol Int, 1997. 43(4): p. 873-81.
    42. Liao, B., et al., The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol Chem, 2005. 280(18): p. 18517-24.
    43. Loganath, A., et al., Comparison of AFP and beta-hCG levels in infiltrating duct mammary carcinoma at different stages of malignancy. Pathology, 1988. 20(3): p. 275-8.
    44. Shimokawa, T., et al., Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Res, 2003. 63(19): p. 6116-20.
    45. Gure, A.O., et al., Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Proc Natl Acad Sci U S A, 2000. 97(8): p. 4198-203.
    46. Hsu, C.C., et al., Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach. Oncogene, 2011. 30(6): p. 654-67.
    47. 陳怡文, 結合生物資訊暨實驗篩選以尋找 Wnt/β-catenin 傳遞路徑之新穎基因, in 醫學檢驗生物技術學系碩博士班. 2011, 國立成功大學: 台南市. p. 78.
    48. Guo, Y., et al., Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene, 2006. 384: p. 51-61.
    49. Zhou, J., S.B. Ng, and W.J. Chng, LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells. Int J Biochem Cell Biol, 2013. 45(5): p. 973-8.
    50. Cheng, S.W., et al., Lin28B is an oncofetal circulating cancer stem cell-like marker associated with recurrence of hepatocellular carcinoma. PLoS One, 2013. 8(11): p. e80053.
    51. White, B.A., PCR protocols-current methods and applications. 1993. 15: p. 385.
    52. rtpcr_vs_tradpcr.pdf.
    53. Yin, W., P. Xiang, and Q. Li, Investigations of the effect of DNA size in transient transfection assay using dual luciferase system. Anal Biochem, 2005. 346(2): p. 289-94.

    下載圖示 校內:2019-08-27公開
    校外:2019-08-27公開
    QR CODE