簡易檢索 / 詳目顯示

研究生: 陳柏瑜
Chen, Bo-Yu
論文名稱: 共平面內部環形電極於圓孔型液晶透鏡之光電性能改善
Electro-optical improvements of hole-patterned electrode liquid crystal lenses via an additional coplanar inner ring electrode
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 圓環電極液晶透鏡等效電路調制轉換函數
外文關鍵詞: coplanar inner ring electrode, hole-patterned electrode, lens arrays, electric circuit model
相關次數: 點閱:107下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討利用共平面圓環形電極於圓孔型電極液晶透鏡之性能改善研究,包括操作電壓、電壓頻率,以及共平面圓環形電極對透鏡性能影響之機制。
    圓孔型電極液晶透鏡乃是利用圓孔型電極在液晶層中產生非均勻對性電場,使得液晶分子方向形成適當的折射率係數梯度分佈,當入射光進入液晶透鏡後,波前受到折射率係數梯度分佈的調制而達到匯聚或發散光束的能力。
    利用簡單的製程在圓孔型電極區域加入一個共平面同心圓環電極達到不同於單一圓孔型電極的電場分佈,透過電阻電容等效電路模型比對兩者差異所對液晶層液晶分子方向分佈的影響與其對應之透鏡能力。
    實驗發現以孔徑1 mm的圓孔型電極搭配外半徑180 μm (線寬20 μm)的圓環電極所製作之液晶透鏡,明顯地改善圓孔型電極液晶透鏡能力,包括最短焦距的操作電壓、成像的品質、調制轉換函數(Modulation Transfer Function ,MTF) 的曲線。

    A proposed type of hole-patterned electrode liquid crystal lenses (HPELCLs) with an additional coplanar inner ring electrode (CIRE) was investigated. As a result, the CIRE- HPELCLs show better electro-optical performance than that in the HPELCLs when operating with 100 Hz electric frequencies In order to investigate how the CIRE do effects on lens performance, the electric circuit model was used to analyze in the LC lenses. In addition, the CIRE-HPELCL arrays was also investigated. According the electric circuit model to change the thickness of NOA65 dielectic film, it is also consistent as well as the comparisons in single LC lens types.

    摘要 I Abstract II 誌謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 6 第二章 實驗原理 7 2.1 液晶材料特性[9] 7 2.1-1 液晶的發現 7 2.1-2 液晶的分類 8 2.1-3 液晶的光學性質 9 2.2 折射率梯度型透鏡 11 2.2-1 圓孔型電極液晶透鏡 12 2.2-2 圓孔型電極液晶透鏡干涉條紋 14 2.2-3 圓孔電極液晶透鏡不連續線成因與解決方法 17 2.3 圓環電極液晶透鏡等效電路模型[7] 19 2.4 Quick MTF軟體影像分析原理[23-25] 22 第三章 實驗製程與方法 25 3.1 具有與不具有圓環電極之圓孔型電極液晶透鏡製作 25 3.1-1 電極製作方法 25 3.1-2 NOA65 介電層塗佈 26 3.1-3 配向層塗佈 28 3.1-4 液晶透鏡組裝 28 3.2 實驗裝置架設 30 3.2-1 干涉條紋量測 31 3.2-2 焦距量測 33 3.2-3 改變基板厚度液晶透鏡之特性量測 34 3.2-4 成像拍攝 37 第四章 實驗結果與討論 39 4.1 NOA65膜厚對防止液晶透鏡產生不連續線的影響 39 4.1-1 NOA65膜厚均勻度 39 4.1-2 NOA65膜厚防止不連續線 40 4.2 圓環電極孔徑大小對液晶層電場分佈之影響 42 4.2-1 等位線電腦模擬 42 4.3 具有與不具有圓環電極之圓孔型電極液晶透鏡能力 45 4.3-1 圓環電極尺寸對電控焦距之影響 48 4.3-2 液晶透鏡對操作電壓頻率之比較 52 4.3-3 液晶透鏡焦距量測實驗之比較 55 4.3-4 液晶透鏡改變上基板厚度之比較 56 4.3-5 液晶透鏡與玻璃透鏡利用MTF軟體影像評估之比較 59 4.4 具有與不具有圓環電極之圓孔型電極液晶透鏡陣列變頻操作 63 4.4-1 液晶透鏡陣列頻率操在100 Hz下比較 65 4.4-2 液晶透鏡陣列操作在 100 Hz下電壓與焦距量測 66 4.4-3 液晶透鏡陣列在不同NOA65厚度波前誤差比較 69 4.4-4 液晶透鏡陣列與玻璃透鏡成像用MTF軟體評估 72 第五章 結論與未來展望 75 5.1 結論 75 5.2 未來展望 75 參考文獻 77

    [1] H. Ren et al., "Tunable-focus flat liquid crystal spherical lens," Apply .Phys. Lett.84,4789-4791(2004).
    [2] H. Ren et al., "Tunable-focus cylindrical liquid crystal lens," Jpn. J. Appl. Phys. Part 1 43,652-653(2004)
    [3] J. Liu et al., "A focus-switchable lens made of polymer-liquid crystal composite," J. Cryst. Growth 288,192-164(2006).
    [4] M. Ye and s. sato, "Optical properties of liquid crystal lens of any size," Jpn. J . Appl. Phys.41,L571-L573(2002)
    [5] A.F.Naumov, M.Yu.Loktev " Liquid-crystal adaptive lenses with modal control ", Opt. Lett.23:992-994(1998).
    [6] P. J. Bos et al., "Near diffraction limited and low haze electro optical tunable liquid crystal lens with floating electrodes," Opt. Express,21:8371-8381(2013).
    [7] T. Galstian et al., "High optical quality electrically variable liquid crystal lens using an additional floating electrode,"Opt.Lett.41:3265-3269(2016).
    [8] C. J. Hsu et al., "Large aperture liquid crystal lens with an imbedded floating ring electrode," Opt. Express, 24:16722-16732. (2016).
    [9] 松本正一 ˙角田市良 合著(2005) "液晶之基礎與應用,"國立編譯館,民國94年修訂八版
    [10] Mouquinho A, Petrova K, Barros M T, and sotomayor J. New Polymer Networks for PDLC Films Application, New Polymers for special Applications, Chapter 5: 139-164.(2012)
    [11] Bruce A. Averill and Patricia Eldredge “Chemistry: Principles, Patterns, and Applications”,1st. Edition, Chap. 11.
    [12] Jianshu Cao and B. J. Berne, "Theory of polarizable liquid crystal: Optical birefringence," J. Chem. Phys, 99(3),1 August,1993.
    [13] F. C. Frank, "On The Theory Of Liquid Crystal," Faraday soc., 25,p.19 (1958).
    [14] I. C. Khoo, “Nonlinear optics, active plasmonic and tunable metamaterials with liquid crystals,” Prog. Quant μm Electron. 38(2), 77–117 (2014).
    [15] 張繼鴻, " 發展一可用電壓調控焦距的液晶元件 ", 私立中原大學應用物理研究所碩士論文, 中華民國92年
    [16] 高子翔, " 利用自對位黃光微影製程實現偏振無關液晶透鏡陣列與其成像品質優化研究," 國立成功大學光電科學與工程研究所碩士論文, 中華民國108年
    [17] Y. Choi, J. H. Park, J. H. Kim and s. D. Lee, " Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Master, 21. 643-646. (2002)
    [18] C. J. Hsu and C. R. sheu, " Preventing occurrence of disclination line in liquid crystal lenses with a large aperture by means of polymer stabilization ", Opt. Express, 19. 14999-15008. (2011)
    [19] M. Ye, B. Wang and s. sato, " Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field ", Jpn. J. Appl. Phys, 42. 5086-5089. (2003)
    [20] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li, M. F. Chen, Y. P. Hsieh, H. L. Kuo and C. H. Lin, "Influence of pretilt angle on disclination lines of liquid crystal lens " , Appl. Opt, 43. 4269-4274. (2012)
    [21] M. Ye, B. Wang and s. sato, " Liquid-crystal lens with a focal length that is variable in a wide range ", Appl. Opt, Vol. 43, No. 35 (2004)
    [22] 李永勳 編譯,"電磁學(第二版)",p.325-374, 偉明圖書,(2016)
    [23] M. Estribeau, P. Magnan, " Fast MTF measurement of CMOs imagers using ISO 12233 slantededge methodology ", Proc. SPIE, vol. 5251. pp. 243-252. (2004)
    [24] I. A. Cunningham and A. Fenster, " A method for modulation transfer function determination from edge profiles with correction for finiteelement differentiation ", Med. Phys, 14. 533. (1987)
    [25] Greer P. B, van Doorn T, " Evaluation of an algorithm for the Assessment of the MTF using an edge method ", Med. Phys,27(9), 2048~2059 (2000)
    [26] 張延任, "以額外介電層與非對稱水平配向法製作無不連續線之液晶透鏡陣列暨其應用於積分成像系統研究," 國立成功大學光電科學與工程研究所碩士論文, 中華民國105年
    [27] Deng-Ke Yang, Shin-Tson Wu, " Fundamentals of liquid crystal devices ", Chap. 5, John Wiley & Sons .(2006)
    [28] T. Scharf, P. Kipfer, M. Bouvier And J. Grupp, " Diffraction limited liquid crystal microlenses with planar alignment ", Jpn. J. Appl.Phys, 39. P. 6629. (2000)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE