簡易檢索 / 詳目顯示

研究生: 張家華
Chang, Chia-Hua
論文名稱: 基於共享式同心圓拓樸機制建構 陣列波導光柵之分波與分碼多重擷取被動光網路
Structuring Waveguide-Gratings WDMA/OCDMA PON over Central Shared Concentric-Circular Topology
指導教授: 黃振發
Huang, Jen-Fa
共同指導教授: 張耀堂
Chang, Yao-Tang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 64
中文關鍵詞: 光被動網路同心圓拓樸粗陣列波導光柵延伸性最大長度序列碼光分波/分碼多重存取
外文關鍵詞: Passive optical network (PON), concentric-circles topology, Coarse arrayed-waveguide grating (coarse AWG), Extended M-sequence (EMS) code, WDMA/OCDMA
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應光被動網路靈活性、安全性、與存活能力等多樣性需求,本論文提出基於同心圓拓樸(concentric-concentric circles topology)分佈結合光分波與分碼多重擷取(WDMA/OCDMA)機制應用於中央共享式(central-shared)光網路單元(optical network units, ONUs),且同時運用陣列波導光柵(arrayed-waveguide gratings, AWGs)路由器的循環週期與自由頻寬間距(free-spectral range, FSR)之特性建構於被動光網路中。在提出的架構中,在光網路裡全部的光網路單元根據各自的地理位置分佈適當的半徑組合成一同心圓型式去切割成不同的同心圓光網路單元群組(concentric circles ONU group),藉由這種同心圓拓樸我們可以固定每一圈同心圓的往返時間(round trip time)而使得系統效能有顯著的提升。

    本論文使用一個粗陣列波導光柵(coarse AWG)路由器不僅保留了指配碼正交性也確保平衡檢測器只會發生最小波長的碰撞。接著我們使用延伸性最大長度序列碼(Extended M-sequence code, EMS code )去實現基於陣列波導光柵的編/解碼器將可以獲得更方便又簡單的編解碼過程且全部使用者的訊息可一次全部解碼出來,此外EMS碼可以放鬆碼長限制並且可增加同心圓光網路單元群組的使用者數目。

    本論文將分成兩個部份去探討系統效能,第一、探討多重存取干擾(multiple-access interference, MAI)暨相位導致振幅失真(phase-induced intensity noise, PIIN)的效應,本論文提出的同心圓WDMA/OCDMA機制與傳統光頻域振幅分碼多重擷取 (SAC-OCDMA)在錯誤率為10-9的使用者比較之下使用者數目明顯增加並且更適合用於非同步的資料傳送。第二、估計本論文架構的光功率預算(optical power budget)將可以得到在被動光網路上更實際的功率損耗。因此,比較傳統分時、分波、與分碼多工被動光網路機制,本論文提出的同心圓WDMA/OCDMA被動光網路機制將更兼具靈活性、私密性、及方便性機能的另一選擇方案。

    In order to realize passive optical networks (PONs) with flexible, confidential and survivable capacities, a hybrid wavelength-division multiple-access and optical code-division multiple-access (WDMA/OCDMA) scheme over central-shared concentric-circles topology optical network units (ONUs) is presented. Importantly, the periodic cyclic and free-spectral-range (FSR) properties of arrayed-waveguide grating (AWG) routers are also exploited. In the current study, the total ONU capacity in the network is appropriately radius to be partitioned into different groups in accordance with the subscribers’ geographical locations. By combining concentric-circles for ONU groups to fix the round trip time from different circles then system performance will be significantly increased.

    By using a coarse AWG router, the proposed concentric-circles topology retains not only signatures orthogonality but also minimal wavelength collisions in the photo-detector. We adopt extended M-sequence (EMS) code to correspond to the AWG codecs for the more convenient and simple coding processes. Besides, the EMS code can relax the code-length and accommodate more users in one group.

    The proposed scheme will be examined in two separate parts. Firstly, effects of multiple-access interference (MAI) and phase-induced intensity-noise (PIIN) are investigated. The proposed scheme allows a more significant increase in the number of simultaneous active users than the conventional SAC-OCDMA scheme under the specified bit error rate of 10-9. Secondly, estimation of optical power budget offered for the proposed concentric circles optical network will be discussed. Compared to the current TDM-PON, WDM-PON, and CDM-PON schemes, the proposed WDMA/OCDMA scheme is an alternative solution in network flexibility, confidentiality, and convenience.

    Chapter 1. Introduction 1 1.1 Development of PON technology over FTTH 2 1.2 Possible multiplexing technology in the PON 3 1.3 Conventional optical network topologies 9 1.4 Motivation and the thesis preview 10 Chapter 2. Basic concept of WDM/OCDMA with concentric-circles topology 15 2.1 Properties of optical waveguide-grating components 15 2.2 Basic concept of concentric-circles topology 19 2.3 Schematic diagram of concentric WDM/OCDMA 23 Chapter 3. AWG-based WDM/OCDMA with Extended M-sequence coding 25 3.1 Code design for Extended M-sequence (EMS) code 25 3.2 Coded EMS spectrum over concentric WDM/OCDMA 27 3.3 System configuration for concentric WDM/OCDMA 29 3.4 Coding process and Multiple Access Interference cancellation 34 Chapter 4. System performance and power budget analysis 39 4.1 Bit Error Rate (BER) evaluation with EMS code 39 4.2 Concentric-circles WDM/OCDMA performance 48 4.3 Estimation of optical power budget 54 Chapter 5. Conclusions 60 References 61 自述(About the Author) 64

    [1] “World Record 69-Terabit Capacity for Optical Transmission over a Single Optical Fiber,” NTT (Nippon Telegraph and Telephone Corporation), News Release, March 25, 2011, Retrieved from http://www.ntt.co.jp/news2011
    [2] J. R. Stern, C. E. Hoppitt, D. B. Payne, M. H. Reeve, and K. Oakley, "TPON-a passive optical network for telephony," Fourteenth European Conference on Optical Communication, pp. 203-206 vol.1, 1988.
    [3] G. Kramer and G. Pesavento, "Ethernet passive optical network (EPON): Building a next-generation optical access network," IEEE Commun. Mag., vol. 40, pp. 66-73, Feb. 2002.
    [4] K. Kitayama, X. Wang, and N. Wada, "OCDMA over WDM PON - Solution path to gigabit-symmetric FTTH," IEEE J. Lightwave Technol., vol. 24, pp. 1654-1662, Apr 2006.
    [5] F. T. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, "Success-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON," IEEE Commun. Mag., pp. S40-S47, Nov 2005.
    [6] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," IEEE J. Lightwave Technol., vol. 22, pp. 2582-2591, Nov. 2004.
    [7] A. Sierra and S. V. Kartalopoulos, "Evaluation of Two Prevalent EPON Networks Using Simulation Methods," International Conference on Internet and Web Applications and Services/Advanced International Conference on Telecommunications, pp. 48-48, Feb. 2006.
    [8] J. S. Wu, F. R. Gu, and H. W. Tsao, "Jitter performance analysis of SOCDMA-based EPON using perfect difference codes," IEEE J. Lightwave Technol., vol. 22, pp. 1309-1319, May 2004.
    [9] A. Stok and E. H. Sargent, "The role of optical CDMA in access networks," IEEE Commun. Mag., vol. 40, pp. 83-87, Sep. 2002.

    [10] C .C .Yang,“HybridWavelength-Division-Multiplexing/Spectral–Amplitude-Coding Optical CDMA system,” IEEE Photonics Technology Letters, vol. 17, no. 6, pp. 1343-1345, June 2005.
    [11] S. P. Tseng and J. Wu, ”A new family suitable for high-rate SAC-OCDMA PONs applications,” IEEE journal on areas in Commun,vol.28, no.6,pp. 827-837,Aug 2010.
    [12] S. P. Tseng and J. Wu, “Extended M-sequence codes for SAC FO-CDMA PONs application,” Electron. Lett., vol. 44, no. 7, pp. 488-490, Mar. 2008.
    [13] S. P. Tseng and J. Wu, “Extended perfect difference codes for SAC optical CDMA PONs,” IEEE Commun. Lett., vol. 12, no. 8, pp. 587-589, Aug. 2008.
    [14] C. C. Yang, “Interference elimination in optical CDMA passive optical network using multiple-weight codewords,” Optical Fiber Technology, pp. 388-390, May 2009(15).
    [15] H. Takahashi, K. Oda, H. Toda, and Y. Inoue, “Transmission characteristics of arrayed waveguide NxN wavelength multiplexer,” IEEE J. Lightwave Technol. Vol. 13, pp. 447-455, Mar. 1995.
    [16] J. S. Jhou, J. Y. Lin and J. H. Wen, “Performance enhancement of perfect difference codes with spectral amplitude coding using sub-optimal decision threshold,” Euro. Trans. Telecomms. Vol. 18, No 7, pp. 745-759, Feb. 2007.
    [17] C.C. Yang, J.F. Huang, and H.P. Tseng, “Optical CDMA Network Codecs Structured with M-Sequence Codes over Waveguide-Grating Routers,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 641-643, February 2004.
    [18] Huang, Jen-Fa; Chang, Yao-Tang; Hsu, Che-Chih, “Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks,” Optical Fiber Technology, vol. 13, issue 3, pp. 215-225, July 2007.
    [19] H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Letter, vol. 26, pp. 87-88, 1990.
    [20] C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” Photon Technol. Letter, vol. 3, pp. 896-899, 1991.
    [21] H. Takahashi, and Y. Hibino, “Arrayed-waveguide grating wavelength multiplexers fabricated with flame hydrolysis deposition,” in Dig. 4th Optoelectronics Conf., IECIE, Japan, 1992, Paper 17C1-3.
    [22] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, "Transmission characteristics of arrayed-wave-guide N×N wavelength multiplexer," IEEE J. Lightwave Technol., vol. 13, pp. 447-455, Mar 1995.
    [23] B. Vidal, D. Madrid, J. L. Corral, and J. Marti, “Novel Photonic True-Time-Delay Beamformer Based on the Free-Spectral-Range Periodicity of Arrayed Waveguide Gratings and Fiber Dispersion,” IEEE Photon. Technol., vol. 14, pp. 1614-1616, Nov. 2002.
    [24] C. Bock, J. Prat, and S. D. Walker, “Hybrid WDM/TDM PON Using the AWG FSR and Featuring Centralized Light Generation and Dynamic Bandwidth Allocation”, IEEE J. Lightwave Technol., vol. 23, Dec. 2005.
    [25] A. Banerjee, Y. Pary, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” Journal of Optical Networking., vol. 4, no. 11, pp. 824–833, Nov. 2005.
    [26] Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitue-coding optical CDMA systems,” IEEE J. Lightwave Technol., vol. 19, pp. 1274-1281, Sep. 2001.
    [27] E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, pp. 1176-1185, Sept. 1998.
    [28] C.C.Yang, “Modified Legedre sequences for optical CDMA-based passive optical networks,” IEEE Commun. Lett., vol.10, pp.393-395, May 2006.

    下載圖示 校內:2014-08-24公開
    校外:2014-08-24公開
    QR CODE