簡易檢索 / 詳目顯示

研究生: 陳郁文
Chen, Yu-Wen
論文名稱: 以聚苯胺製備質子交換膜燃料電池陰極觸媒之研究
A Study on Cathode Catalysts Synthesized with Polyaniline for Proton Exchange Membrane Fuel Cell
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 138
中文關鍵詞: 質子交換膜燃料電池非貴重金屬觸媒聚苯胺磷酸十二烷基硫酸鈉
外文關鍵詞: PEMFC, non-precious catalysts, polyaniline, phosphoric acid, sodium dodecyl sulfate
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前質子交換膜燃料電池 (PEMFC) 發展朝向降低成本與提升耐久性,而降低陰極觸媒成本其中一個方法為使用不含貴重金屬的觸媒。本研究主要探討以聚苯胺製備質子交換膜燃料電池陰極觸媒之電化學活性與觸媒性質,並由實驗數據建立觸媒與活性之間的關係。
    本研究中將聚苯胺熱裂解以提供可催化氧氣還原反應的含氮活性座,並探討熱裂解溫度、900 oC下熱裂解持溫時間、後處理、磷酸與十二烷基硫酸鈉前驅物對觸媒電化學活性與其他性質的影響。最後統整所有觸媒性質與0.7 V (vs. Ag/AgCl) 下質量活性之間的關係。
    實驗結果顯示,觸媒表面氮含量隨熱裂解溫度增加而下降,且活性以900 oC熱裂解溫度所得觸媒為最高。900 oC下熱裂解持溫時間1小時具有最高活性。熱裂解後觸媒活性為合成後觸媒的3.4倍;酸處理後觸媒活性則為熱裂解後觸媒的1.4倍;熱處理後觸媒活性為酸處理後觸媒的1.5倍。
    另外,本研究將苯胺 (ANI) 混摻磷酸 (PA) 與十二烷基硫酸鈉 (SDS) 前驅物以增加觸媒活性。實驗結果顯示,混摻磷酸前驅物使碳材結構較為破碎,碳材邊緣比例較高,且表面氮含量約為未混摻的2倍。混摻磷酸前驅物的觸媒經過後處理,活性以PA: ANI = 2: 9最佳,為PA: ANI = 0: 9的1.6倍。混摻十二烷基硫酸鈉 (SDS) 前驅物使表面氮含量變多,且十二烷基硫酸鈉 (SDS) 前驅物與苯胺混摻量越高,接觸角越大。混摻十二烷基硫酸鈉前驅物的觸媒經過後處理以SDS: ANI = 2.25: 9觸媒活性較佳,是未混摻十二烷基硫酸鈉前驅物觸媒的1.9倍。同時混摻苯胺、磷酸與十二烷基硫酸鈉前驅物的觸媒經過後處理以SDS: PA: ANI = 1.35: 3: 9觸媒較佳,為苯胺未混摻磷酸與十二烷基硫酸鈉前驅物的2.4倍。在單電池測試中,自製觸媒最大放電功率為25.9 mW/cm2,為商用白金觸媒的24%。
    觀察實驗結果發現,與觸媒活性成正相關的性質有pyridinic N 加quaternary N所佔的比例及循環伏安圖曲線下面積。

    Currently, developement in PEMFC focus on cost reduction and durability improvement of cathode catalysts. One of the methods in reducing the catalysts cost is developing catalysts without precious metal. In this study, the electrochemical activity and other catalyst properties are explored. Furthermore, the relations between mass activity and catalyst properties were established.
    In this study, polyaniline was pyrolyzed to provide nitrogen active sites for oxygen reduction. The effects of pyrolysis temperature, pyrolysis time at 900 oC, and post-treatment (including acid-treatment and heat-treatment) conditions on electrochemical activity and catalyst properties were explored. Phosphoric acid (PA) precursor and sodium dodecyl sulfate (SDS) precursor were added during aniline polymerization to increase the catalyst activity. The ratio of the precursors to polyaniline were investigated. Furthermore, the relation between mass activity at 0.7 V (vs. Ag/AgCl) and other catalyst properties are summarized.
    The experiment results show that surface nitrogen content decreased while pyrolysis temperature increased. The pyrolysis temperature affected activity significantly, and the optimal temperature was 900 oC. The catalysts with pyrolysis time of 900 oC for 1 hour showed the highest activity which is 4.4 times of the as-prepared catalyst. The activity of catalysts after acid-treatment was 1.6 times of that of catalysts after pyrolysis. The activity of catalysts after heat-treatment was 1.5 times of that of catalysts after acid-treatment. Experiment results showed that addition of PA precursors gave a broken structure with large edge plane exposure and the surface nitrogen content was twice of that of the catalysts without PA addition. The catalysts activity with PA: ANI = 2: 9 after post-treatment were 1.6 times of that with PA: ANI = 0: 9. The addition of SDS resulted in higher surface nitrogen content. The contact angle of catalyst increased with the amout of SDS. The catalysts added with SDS: ANI = 2.25: 9 after post-treatment had higher activity, which were 1.9 times of that of SDS: ANI = 0: 9. Catalysts activity with SDS: PA: ANI = 1.35: 3: 9 after post-treatment were 2.4 times of that with SDS: PA: ANI = 0: 0: 9. In the single cell results, the maximum power density (25.9 mW/cm2) of best home-made catalyst was 24% of that of commercial Pt/C catalyst.
    According to experiment results, the sum of pyridinic N and quaternary N and the integration area below CV curve increased with catalysts activity.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XVIII 一、序論 1 1.1 燃料電池簡介 1 1.1.1燃料電池起源與特色 1 1.1.2燃料電池種類 4 1.2 質子交換膜燃料電池發展現況與方向 11 1.2.1 世界燃料電池發展概況 11 二、原理與文獻回顧 16 2.1 氧氣還原機制 16 2.2 質子交換膜燃料電池工作原理 17 2.3 電池放電極化現象 19 2.4 電化學分析方法 22 2.5 含氮非貴重金屬觸媒 23 2.5.1 含氮觸媒氧氣還原活性座與反應機制 24 2.5.2 以大環化合物 (Macrocycle) 為氮源 29 2.5.3 以含氮有機化合物為氮源 30 2.5.4 以氨氣為氮源 30 2.5.5 以含氮高分子為氮源 33 2.6 研究目的 34 三、實驗方法 36 3.1 藥品 36 3.2 儀器設備 36 3.3 觸媒製備 38 3.3.1 添加苯胺觸媒合成方法 38 3.3.2 磷酸前驅物混摻觸媒合成方法 39 3.3.3十二烷基硫酸鈉前驅物添加觸媒合成方法 40 3.3.4 觸媒後處理步驟 41 3.4 電極與觸媒漿料製備 42 3.4.1 半電池電極與觸媒漿料製備 42 3.4.2 單電池電極與觸媒漿料製備 42 3.5 觸媒電化學活性分析 43 3.5.1 循環伏安法 43 3.5.2 線性掃描法 43 3.6 單電池放電測試 43 3.6.1 質子交換膜前處理 43 3.6.2 單電池參考電極製備 44 3.6.3 膜電極組熱壓製備 46 3.6.4 單電池極化曲線分析 47 3.7 觸媒物理化學性質分析 48 3.7.1 傅立葉轉換紅外線光譜分析 48 3.7.2 拉曼光譜分析 48 3.7.3 X光繞射儀分析 48 3.7.4 熱重分析 48 3.7.5 化學分析電子光譜儀 48 3.7.6 表面積與孔洞分析 49 3.7.7 穿透式電子顯微鏡分析 49 3.7.8 掃描式電子顯微鏡分析 49 3.7.9 接觸角分析 50 四、結果與討論 51 4.1 觸媒熱裂解溫度對觸媒特性影響之分析 51 4.1.1 觸媒表面結構分析 51 4.1.2 觸媒官能基、原子鍵結方式與成份分析 56 4.1.3 觸媒電化學活性與物理化學性質關聯分析 61 4.2 觸媒熱裂解時間對觸媒特性影響之分析 65 4.2.1 觸媒表面結構分析 65 4.2.2 觸媒官能基、原子鍵結方式與成份分析 68 4.2.3 觸媒電化學活性與物理化學性質關聯分析 71 4.3 觸媒後處理對觸媒特性影響之分析 75 4.3.1 觸媒表面結構分析 76 4.3.2 觸媒官能基、原子鍵結方式與成份分析 80 4.3.3 觸媒電化學活性與物理化學性質關聯分析 83 4.4 磷酸前驅物對觸媒特性影響之分析 86 4.4.1 觸媒表面結構分析 86 4.4.2 觸媒官能基、原子鍵結方式與成份分析 91 4.4.3 觸媒電化學活性與物理化學性質關聯分析 95 4.5 十二烷基硫酸鈉前驅物對觸媒特性影響之分析 100 4.5.1 觸媒表面結構分析 100 4.5.2 觸媒官能基、原子鍵結方式與成份分析 102 4.5.3 觸媒電化學活性與物理化學性質關聯分析 107 4.6 綜合討論 110 4.6.1磷酸與十二烷基硫酸鈉前驅物對觸媒電化學活性影響分析 110 4.6.2 單電池效能分析 113 4.6.3觸媒性質綜合分析 120 五、結論 124 參考文獻 126 附錄一 136 附錄二 137 自述 138

    [1] A.J. Appleby, FUEL CELL TECHNOLOGY: STATUS AND FUTURE PROSPECTS, Energy Vol. 21 (1996) 521-653.
    [2] J.M. Andújar, F. Segura, Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews, 13 (2009) 2309-2322.
    [3] K.A.F. Linda Carrette, Ulrich Stimming, Fuel Cells: Principles, Types, Fuels, and Applications, CHEMPHYSCHEM, 1 (2000) 162-193.
    [4] C. Song, Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century, Catalysis Today, 77 (2002) 17-49.
    [5] S. Mekhilef, R. Saidur, A. Safari, Comparative study of different fuel cell technologies, Renewable and Sustainable Energy Reviews, 16 (2012) 981-989.
    [6] T.N.V. M. Momirlan, Current status of hydrogen energy, Renewable and Sustainable Energy Reviews, 6 (2002) 141–179.
    [7] J.O.M. Bockris, The hydrogen economy: Its history, International Journal of Hydrogen Energy, 38 (2013) 2579-2588.
    [8] B.C.H.S.A. Heinzel, Materials for fuel-cell technologies, NATURE, 414 (2011).
    [9] A.L. Dicks, Molten carbonate fuel cells, Current Opinion in Solid State and Materials Science, 8 (2004) 379-383.
    [10] E.M.L. Jose Luz Silveira, Luiz F. Ragonha Jr., Analysis of a molten carbonate fuel cell: cogeneration to produce electricity and cold water, Energy, 26 (2001) 891–904.
    [11] H.A.G. K. WANG, N. M. MARKOVIC and P. N. Ross, JR, ON THE REACTION PATHWAY FOR METHANOL AND CARBON MONOXIDE ELECTROOXIDATION ALLOY VERSUS Pt-Ru ALLOY SURFACES ON Pt-Sn, Electrochimico Acta., Vol. 41. (1996) 2587-2593.
    [12] S. Satyapal, Hydrogen & Fuel Cells- Program Overview -, 2012 Annual Merit Review and Peer Evaluation Meeting, (2012).
    [13] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, 88 (2011) 981-1007.
    [14] S. Satyapal, Fuel Cell Technologies Overview, U.S. Department of Energy Fuel Cell Technologies Program, (2012).
    [15] A. Rabis, P. Rodriguez, T.J. Schmidt, Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges, ACS Catalysis, 2 (2012) 864-890.
    [16] D. Papageorgopoulos, FUEL CELL TECHNOLOGIES PROGRAM DOD/DOE Shipboard Fuel Cell Workshop, U.S. Department of Energy Fuel Cell Technologies Program, (2011).
    [17] Y.-C.-P.a.G.R. HALINA S. WROBLOWA, ELECTROREDUCTION OF OXYGEN A NEW MECHANISTIC CRITERION, J. Electroanal. Chem., 69 (1976) 195-201.
    [18] E. YEAGER, ELECTROCATALYSTS FOR O2 REDUCTION, Electrochimica Acta, 29 (1984) 1527-1537.
    [19] J.R. J. K. Nørskov, A. Logadottir, and L. Lindqvist, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, J. Phys. Chem. B, 108 (2004) 17886-17892.
    [20] G.S. Karlberg, J. Rossmeisl, J.K. Norskov, Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory, Physical chemistry chemical physics : PCCP, 9 (2007) 5158-5161.
    [21] S. Shimpalee, S. Greenway, J.W. Van Zee, The impact of channel path length on PEMFC flow-field design, Journal of Power Sources, 160 (2006) 398-406.
    [22] S. Litster, G. McLean, PEM fuel cell electrodes, Journal of Power Sources, 130 (2004) 61-76.
    [23] I. Mohamed, N. Jenkins, Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms, Journal of Power Sources, 131 (2004) 142-146.
    [24] J.L.a.A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, Ltd., Second Edition (2000).
    [25] Y.W.R.a.S. Srinivasan, Mass Transport Phenomena in Proton Exchange Membrane Fuel Cells Using O2/He, O2/Ar, and O2/N2 Mixtures II. Theoretical Analysis, J. Electrochem. Soc., 141 (1994).
    [26] J. Owejan, T. Trabold, D. Jacobson, M. Arif, S. Kandlikar, Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell, International Journal of Hydrogen Energy, 32 (2007) 4489-4502.
    [27] J.-Y. Choi, D. Higgins, Z. Chen, Highly Durable Graphene Nanosheet Supported Iron Catalyst for Oxygen Reduction Reaction in PEM Fuel Cells, Journal of The Electrochemical Society, 159 (2012) B87.
    [28] S.K. Anusorn Kongkanand, G. Girishkumar, and Prashant Kamat, Single-Wall Carbon Nanotubes Supported Platinum Nanoparticles with Improved Electrocatalytic Activity for Oxygen Reduction Reaction, Langmuir, 22 (2006) 2392-2396.
    [29] C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction, Electrochimica Acta, 53 (2008) 4937-4951.
    [30] S.P.J. Shuangyin Wang, T. J. White, Jun Guo, and Xin Wang, Electrocatalytic Activity and Interconnectivity of Pt Nanoparticles on Multiwalled Carbon Nanotubes for Fuel Cells, J. Phys. Chem. C, 113 (2009) 18935-18945.
    [31] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56 (2005) 9-35.
    [32] A.M.M. Xiaojun Dang, and Joseph T. Hupp, Electrochemically Modulated Diffraction A Novel Strategy for the Determination of Conduction-Band-Edge Energies for Nanocrystalline Thin-Film Semiconductor Electrodes, Electrochemical and Solid-State Letters, 3 (2000) 555-558.
    [33] K.E. Xingxing Chen, Min Zhou, Michael Bron, and Wolfgang Schuhmann, Electrocatalytic Activity of Spots of Electrodeposited Noble-Metal Catalysts on Carbon Nanotubes Modified Glassy Carbon, Anal. Chem. 2009, 81 (2009) 7597-7603.
    [34] S.M.S. Kumar, N. Hidyatai, J.S. Herrero, S. Irusta, K. Scott, Efficient tuning of the Pt nano-particle mono-dispersion on Vulcan XC-72R by selective pre-treatment and electrochemical evaluation of hydrogen oxidation and oxygen reduction reactions, International Journal of Hydrogen Energy, 36 (2011) 5453-5465.
    [35] C.H. Choi, S.H. Park, S.I. Woo, Phosphorus–nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon, Journal of Materials Chemistry, 22 (2012) 12107.
    [36] R. Othman, A.L. Dicks, Z. Zhu, Non precious metal catalysts for the PEM fuel cell cathode, International Journal of Hydrogen Energy, 37 (2012) 357-372.
    [37] Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells, Energy & Environmental Science, 4 (2011) 3167.
    [38] M. Watanabe, D.A. Tryk, M. Wakisaka, H. Yano, H. Uchida, Overview of recent developments in oxygen reduction electrocatalysis, Electrochimica Acta, 84 (2012) 187-201.
    [39] F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells, Energy & Environmental Science, 4 (2011) 114.
    [40] U.I. Kramm, J. Herranz, N. Larouche, T.M. Arruda, M. Lefevre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, J.P. Dodelet, Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells, Physical chemistry chemical physics : PCCP, 14 (2012) 11673-11688.
    [41] G. Wu, C.M. Johnston, N.H. Mack, K. Artyushkova, M. Ferrandon, M. Nelson, J.S. Lezama-Pacheco, S.D. Conradson, K.L. More, D.J. Myers, P. Zelenay, Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells, Journal of Materials Chemistry, 21 (2011) 11392.
    [42] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science, 5 (2012) 7936.
    [43] W.Z. Yanguang Li, Hailiang Wang, Liming Xie, Yongye Liang, Fei Wei, Juan-Carlos Idrobo, Stephen J. Pennycook & Hongjie Dai, An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes, Nature Nanotechnology, 7 (2012) 394-400.
    [44] F.d.r. Jaouen, O2 Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells. Part I: Experimental Rates of O2 Electroreduction, H2O2 Electroreduction, and H2O2 Disproportionation, The Journal of Physical Chemistry C, 113 (2009) 15433-15443.
    [45] T.S. Olson, S. Pylypenko, J.E. Fulghum, P. Atanassov, Bifunctional Oxygen Reduction Reaction Mechanism on Non-Platinum Catalysts Derived from Pyrolyzed Porphyrins, Journal of The Electrochemical Society, 157 (2010) B54.
    [46] P.D. James P. Collman, Yutaka Konai, Matt Marrocco, Carl Koval and Fred C. Anson, Electrode Catalysis of the Four-Electron Reduction of Oxygen to Water by Dicobalt Face-to-Face Porphyrins, J. Am. Chem. SOC., 102 (1980) 6027-6036.
    [47] R.J. Deryn Chu, Novel electrocatalysts for direct methanol fuel cells, Solid State Ionics, 148 (2002) 591-599.
    [48] M.B. Takashi Ikeda, Sheng-Feng Huang, Kiyoyuki Terakura, Masaharu Oshima and Jun-ichi Ozaki, Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction, J. Phys. Chem. C, 38 (2008) 14706-14709.
    [49] Y. Okamoto, First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon, Applied Surface Science, 256 (2009) 335-341.
    [50] H. Kim, K. Lee, S.I. Woo, Y. Jung, On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons, Physical chemistry chemical physics : PCCP, 13 (2011) 17505-17510.
    [51] R. Jasinski, A New Fuel Cell Cathode Catalyst, Nature, 201 (1964) 1212.
    [52] H. Jahnke, Cathode reduction of oxygen on organic catalysts in sulfuric acid, Abstr. Ber. Bunsenges. Phys. Chem., 72 (1968) 1053.
    [53] J.F.V.B.A.K.J.K. J. A. ROB VAN VEEN, Effect of Heat Treatment on the Performance of Carbon-supported Transition-metal Chelates in the Electrochemical Reduction of Oxygen, J. Chem. SOC. Faraday Trans. I, 77 (1981) 2827-2843.
    [54] S.L.G. D.A. SCHERSON, C. FTERRO,E. B. YEAGER, Cobalt tetramethoxyphenyl porphyrin—emission Mossbauer spectroscopy and O2 reduction electrochemical studies, Electrochimica Acta., 28 (1983) 1205-1209.
    [55] G.G.a.K. WIESENER, Investigations of catalysts from the pyrolyzates of cobalt-containing and metal-free dibenzotetraazaannulenes on active carbon for oxygen electrodes in an acid medium, J. Electroanal. Chem., 159 (1983) 155-162.
    [56] F. Calle-Vallejo, J.I. Martínez, J.M. García-Lastra, E. Abad, M.T.M. Koper, Oxygen reduction and evolution at single-metal active sites: Comparison between functionalized graphitic materials and protoporphyrins, Surface Science, 607 (2013) 47-53.
    [57] U.I. Kramm, I. Herrmann, S. Fiechter, G. Zehl, I. Zizak, I. Abs-Wurmbach, J.r. Radnik, I. Dorbandt, P. Bogdanoff, On the Influence of Sulphur on the Pyrolysis Process of FeTMPP-Cl-based Electro-Catalysts with Respect to Oxygen Reduction Reaction (ORR) in Acidic Media, (2009) 659-670.
    [58] M.L.v.a.J.P. Dodelet, Molecular Oxygen Reduction in PEM Fuel Cells: Evidence for the Simultaneous Presence of Two Active Sites in Fe-Based Catalysts, J. Phys. Chem. B 2002, 106 (2002) 8705-8713.
    [59] H.A.C.a.J.F.V.B. J. A. R. VAN VEEN, On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines, Electrochimica Acta., 33 (1988) 801-804.
    [60] D.T. S. GUPTA, I. BAE, W. ALDRED, E. YEAGER, Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction, JOURNAL OF APPLIED ELECTROCHEMISTRY, 19 (1989) 19-27.
    [61] J.P.D. M. C. Martins Alves, D. Guay, M. Ladouceur, and G. Tourillon, Origin of the Electrocatalytic Properties for O2 Reduction of Some Heat-Treated Polyacrylonitrile and Phthalocyanine Cobalt Compounds Adsorbed on Carbon Black As Probed by Eiectrochemlstry and X-ray Absorption Spectroscopy, The Journal of Physical Chemistry, 96 (1992) 10898.
    [62] S.H. D. Ohms, R. Franke, V. Neumann and K. Wiesener, Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile, Journal of Power Sources, 38 (1992) 327-334.
    [63] D. von Deak, D. Singh, J.C. King, U.S. Ozkan, Use of carbon monoxide and cyanide to probe the active sites on nitrogen-doped carbon catalysts for oxygen reduction, Applied Catalysis B: Environmental, 113-114 (2012) 126-133.
    [64] Y.N. Stephen M. Lyth, Shogo Moriya, Shigeki Kuroki, Masa-aki Kakimoto, Jun-ichi Ozaki, and Seizo Miyata, Carbon Nitride as a Nonprecious Catalyst for Electrochemical Oxygen Reduction, 20148–20151, J. Phy. Chem. C Letters (2009) 20148-20151.
    [65] Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis, Energy & Environmental Science, 5 (2012) 6717.
    [66] H.T. Chung, C.M. Johnston, K. Artyushkova, M. Ferrandon, D.J. Myers, P. Zelenay, Cyanamide-derived non-precious metal catalyst for oxygen reduction, Electrochemistry Communications, 12 (2010) 1792-1795.
    [67] Y. Zhang, K. Fugane, T. Mori, L. Niu, J. Ye, Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis, Journal of Materials Chemistry, 22 (2012) 6575.
    [68] V. Nallathambi, J.-W. Lee, S.P. Kumaraguru, G. Wu, B.N. Popov, Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells, Journal of Power Sources, 183 (2008) 34-42.
    [69] Q. Liu, H. Zhang, H. Zhong, S. Zhang, S. Chen, N-doped graphene/carbon composite as non-precious metal electrocatalyst for oxygen reduction reaction, Electrochim. Acta, 81 (2012) 313-320.
    [70] J. Qiao, L. Xu, L. Ding, L. Zhang, R. Baker, X. Dai, J. Zhang, Using pyridine as nitrogen-rich precursor to synthesize Co-N-S/C non-noble metal electrocatalysts for oxygen reduction reaction, Applied Catalysis B: Environmental, 125 (2012) 197-205.
    [71] F. Charreteur, F. Jaouen, J.-P. Dodelet, Iron porphyrin-based cathode catalysts for PEM fuel cells: Influence of pyrolysis gas on activity and stability, Electrochimica Acta, 54 (2009) 6622-6630.
    [72] F. Charreteur, F. Jaouen, S. Ruggeri, J. Dodelet, Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction, Electrochimica Acta, 53 (2008) 2925-2938.
    [73] M. Lefevre, E. Proietti, F. Jaouen, J.P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, 324 (2009) 71-74.
    [74] M. Muraoka, H. Tomonaga, M. Nagai, Ammonia-treated brown coal and its activity for oxygen reduction reaction in polymer electrolyte fuel cell, Fuel, 97 (2012) 211-218.
    [75] H. Meng, N. Larouche, M. Lefèvre, F. Jaouen, B. Stansfield, J.-P. Dodelet, Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability, Electrochimica Acta, 55 (2010) 6450-6461.
    [76] W.V. A. L. Bouwkamp-Wijnoltz, J. A. R. van Veen, E. Boellaard and A. M. van der Kraan and S. C. Tang, On Active-Site Heterogeneity in Pyrolyzed Carbon-Supported Iron Porphyrin Catalysts for the Electrochemical Reduction of Oxygen: An In Situ Mossbauer Study, J. Phys. Chem. B, 106 (2002) 12993-13001.
    [77] J.P.D.a.P.B. M. Lefe`vre O2 Reduction in PEM Fuel Cells- Activity and Active Site Structural Information for Catalysts Obtained by the Pyrolysis at High Temperature of Fe Precursors, J. Phys. Chem. B, 104 (2000) 11238-11247.
    [78] M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-based Catalysts for Oxygen Reduction in PEM Fuel Cells: Expanded Study Using the Pore-filling Method, (2009) 105-115.
    [79] M.L.v. F. Jaouen, J. Dodelet, and M. Cai, Heat-Treated Fe-N-C Catalysts for O2 Electroreduction-  Are Active Sites Hosted in Micropores, J. Phys. Chem. B 2006, 110, 110 (2006) 5553-5558.
    [80] E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J.P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nature communications, 2 (2011) 416.
    [81] H. Kiuchi, H. Niwa, M. Kobayashi, Y. Harada, M. Oshima, M. Chokai, Y. Nabae, S. Kuroki, M.-a. Kakimoto, T. Ikeda, K. Terakura, S. Miyata, Study on the oxygen adsorption property of nitrogen-containing metal-free carbon-based cathode catalysts for oxygen reduction reaction, Electrochimica Acta, 82 (2012) 291-295.
    [82] R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells, Nature, 443 (2006) 63-66.
    [83] S. Kuroki, Y. Nabae, M. Chokai, M.-a. Kakimoto, S. Miyata, Oxygen reduction activity of pyrolyzed polypyrroles studied by 15N solid-state NMR and XPS with principal component analysis, Carbon, 50 (2012) 153-162.
    [84] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science, 332 (2011) 443-447.
    [85] K. Jiang, Q. Jia, M. Xu, D. Wu, L. Yang, G. Yang, L. Chen, G. Wang, X. Yang, A novel non-precious metal catalyst synthesized via pyrolysis of polyaniline-coated tungsten carbide particles for oxygen reduction reaction, Journal of Power Sources, 219 (2012) 249-252.
    [86] G. Wu, M. Nelson, S. Ma, H. Meng, G. Cui, P.K. Shen, Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction, Carbon, 49 (2011) 3972-3982.
    [87] B. Wessling, New Insight into Organic Metal Polyaniline Morphology and Structure, Polymers, 2 (2010) 786-798.
    [88] M. Ferrandon, A.J. Kropf, D.J. Myers, K. Artyushkova, U. Kramm, P. Bogdanoff, G. Wu, C.M. Johnston, P. Zelenay, Multitechnique Characterization of a Polyaniline–Iron–Carbon Oxygen Reduction Catalyst, The Journal of Physical Chemistry C, 116 (2012) 16001-16013.
    [89] K.C. Heo, K.S. Nahm, S.-H. Lee, P. Kim, Heat-treated 2,2′-bipyridine iron complex supported on polypyrrole-coated carbon for oxygen reduction reaction, Journal of Industrial and Engineering Chemistry, 17 (2011) 304-309.
    [90] H.-S. Oh, H. Kim, The role of transition metals in non-precious nitrogen-modified carbon-based electrocatalysts for oxygen reduction reaction, Journal of Power Sources, 212 (2012) 220-225.
    [91] J.M.R. Jordi Casanovas, Jaime Rubio, Francesc Illas, and Juan Miguel Jime´nez-Mateos, Origin of the Large N 1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials, J. Am. Chem. Soc, 118 (1996) 8071-8076.
    [92] X.Y. Chen, C. Chen, Z.J. Zhang, D.H. Xie, X. Deng, J.W. Liu, Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability, Journal of Power Sources, 230 (2013) 50-58.
    [93] T. Jeevananda, Siddaramaiah, N.H. Kim, S.-B. Heo, J.H. Lee, Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate, Polym. Adv. Technol., 19 (2008) 1754-1762.
    [94] Y. Feng, N. Alonso-Vante, Nonprecious metal catalysts for the molecular oxygen-reduction reaction, physica status solidi (b), 245 (2008) 1792-1806.
    [95] 陸瑞東, 以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究, 國立成功大學化學工程學系博士論文, (2012).
    [96] 薛志鴻, 質子交換膜型燃料電池電極在CO存在下之阻抗分析, 國立成功大學化學工程學系碩士論文, (2005).
    [97] K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes, Chemistry of Materials, 22 (2010) 1392-1401.
    [98] H.W.R. J. D. HAYAWALT, .AND L. K. FREVEL, Chemical Analysis by X-Ray Diffraction, INDUSTRIAL and ENGINEERING Chemistry of Materials, 10 (1938) 457–512.
    [99] S. Hashimoto, K. Forster, S.C. Moss, Structure refinement of an FeCl3 crystal using a thin plate sample, Journal of Applied Crystallography, 22 (1989) 173-180.
    [100] G.C. F. KELLER-BESREST, Structural Aspects of the α Transition in Stoichiometric FeS: Identification of the High-Temperature Phase, JOURNAL OF SOLID STATE CHEMISTRY, 84 (1990) 194-210.
    [101] W.T.K.S. M. K. Traore, B. J. McCormick, R. C. Dorey, Shao Wen and D. Meyers, Thermal analysis of polyaniline Part I. Thermal degradation of HCl-doped emeraldine base, Synthetic Metals, 40 (1991) 137-153.
    [102] I. Herrmann, U.I. Kramm, J. Radnik, S. Fiechter, P. Bogdanoff, Influence of Sulfur on the Pyrolysis of CoTMPP as Electrocatalyst for the Oxygen Reduction Reaction, Journal of The Electrochemical Society, 156 (2009) B1283.
    [103] J.S. Tang, X.B. Jing, B.C. Wang, F.S. Wang, Infrared-Spectra of Soluble Polyaniline, Synthetic Metals, 24 (1988) 231-238.
    [104] J.M.O.R.a.R.A. POSHER, FUNCTIONAL GROUPS IN CARBON BLACK BY FTIR SPECTROSCOPY, Carbon, 21 (1983) 47-51.
    [105] Y.O.a.N.O. TAKEO OHSAKA, IR ABSORPTION SPECTROSCOPIC IDENTIFICATION OF ELECTROACTIVE AND ELECTROINACTIVE POLYANILINE FILMS PREPARED BY THE ELECTROCHEMICAL POLYMERIZATION OF ANILINE, J. Electroanal. Chem., 161 (1984)399--405, 161 (1984) 399-405.
    [106] EVOLUTION OF NITROGEN FUNCTIONALITIES IN CARBONACEOUS MATERIALS DURING PYROLYSIS.
    [107] M.L.G. S. R. Kelemen, and P. J. Kwiatek, Nitrogen Transformations in Coal during Pyrolysis, Energy & Fuels, 12 (1998) 159-173.
    [108] R.D. KRZYSZTOF STA&CZYK, ZOFIA PIWOWARSCA and STEFAN WITKOWSKI, TRANSFORMATION OF NITROGEN STRUCTURES IN CARBONIZATION OF MODEL COMPOUNDS DETERMINED BY XPS, Carbon, 33 (1995) 1383-1392.
    [109] S.L. Taegon Kim, Kihyun Kwon, Seong-Hwa Hong, Wenming Qiao, Choong Kyun Rhee, Seong-Ho Yoon and Isao Mochida, Electrochemical Capacitances of Well-Defined Carbon Surfaces, Langmuir, 22 (2006) 9086-9088.
    [110] Y.Z.W. X.-L. Wei, S. M. Long, C. Bobeczko, and A. J. Epstein, Synthesis and Physical Properties of Highly Sulfonated Polyaniline, J. Am. Chem. Soc., 118 (1996) 2545-2555.
    [111] L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films, Advanced Functional Materials, 19 (2009) 2782-2789.
    [112] J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance, Carbon, 48 (2010) 487-493.
    [113] J. Kacher, C. Landon, B.L. Adams, D. Fullwood, Bragg's Law diffraction simulations for electron backscatter diffraction analysis, Ultramicroscopy, 109 (2009) 1148-1156.
    [114] J. Cao, G.-Q. Qi, K. Ke, Y. Luo, W. Yang, B.-H. Xie, M.-B. Yang, Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction, Journal of Materials Science, 47 (2012) 5097-5105.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE