簡易檢索 / 詳目顯示

研究生: 鄭又銘
Cheng, Yu-Ming
論文名稱: 製備人類凝血酶調節素類表皮生長因子結構區之重組蛋白及其功能分析
Preparation and Functional Analyses of Various Recombinant Thrombomodulin Derived Epidermal Growth Factor (EGF)-like Structures
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 73
中文關鍵詞: EGF-like 結構區凝血酶調節素
外文關鍵詞: Thrombomodulin, epidermal growth factor (EGF)-like structure
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝血酶調節素 (thrombomodulin, TM) 是一種表現於血管內皮細胞表面的醣蛋白,是生理上重要的抗凝血因子,其蛋白質結構從氨基端依序被分為類外源凝集素(lectin-like)結構區(TMD1), EGF-like 結構區(TMD2), serine/thrtonine-rich 結構區(TMD3), transmembrane 結構區(TMD4) 及碳端的cytoplamic結構區(D5)。凝血酶調節素在不同組織中扮演著:抑制轉移、血管新生調節素、細胞間的連結並具有在不同組織間的抗發炎反應。在之前的研究中,我們發現TMD23重組蛋白,不論是在體內或是體外實驗,都能促進細胞的增生,移動,以及血管的新生。TMD23 重組蛋白,有效改善了K5-Cre/TMLox/Lox老鼠的傷口癒合情形。至於是哪一個EGF結構區或是因為不同凝血酶調節素,在醣化程度功能上的影響與否,仍然有待研究。在這個研究中,我們利用哺乳類表達系統呈現不同的D2以及D3結構區重組蛋白,分別為TMD2 (EGF1-6) D3, TMD2 (EGF2-6) D3, TMD2 (EGF3-6) D3, TMD2 (EGF4-6) D3, TMD2 (EGF5-6) D3 以及TMD2 (EGF6) D3。每一個重組蛋白都可以純化出兩種不同的醣化型:高分子量以及低分子量重組蛋白。高分子量重組蛋白經過chondroitinase ABC酵素作用後,其分子量即轉變成低分子量重組蛋白。接著我們更進一步證實,高分子量TMD23重組蛋白具有與低分子量TMD23重組蛋白相似的生物活性。高分子量重組蛋白不論在與凝血酶(thrombin)結合、活化蛋白質C或是延長凝血酶引起的凝血時間,對人類臍靜脈內皮細胞(human umbilical vein endothelial cell) 的生長,移動和類似毛細血管生成的調節也比低分子量重組蛋白來的有效。除此之外,高分子量重組蛋白在刮傷癒合(scratch wound healing assay)以及老鼠傷口癒合的分析中,其促進傷口癒合的速度也比低分子量重組蛋白來的迅速。在敗血症研究的動物模式中,我們也發現高分子量重組蛋白可以抑制LPS所引起的TNF-α 及IL-6的釋放。綜合以上的實驗結果,顯示高度醣類修飾的凝血酶調節素重組蛋白,在抗凝血與傷口癒合上具有較強的生物活性,也降低敗血症引起的死亡率,這意味著在臨床藥物上的開發,是具有潛在的實用價值。

    Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein is composed of five distinct domains contain a N-terminal lectin-like domain (D1), six epidermal growth factor (EGF)-like repeats (D2), a serine/threonine-rich region (D3), a transmembrane domain (D4) and a short cytoplasmic tail (D5) that perform antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. In our previous study, the recombinant soluble human TM domains 2 and 3 (TMD23) promoted cell proliferation, migration and angiogenesis. The TMD23 significantly improved wound closure in the K5-Cre/TM Lox/Lox mice. However, which epidermal growth factor (EGF)-like structure and whether the presences of carbohydrate were critical for TM functions remains unclear. Human embryonic kidney 293 mammalian expression system was used to prepare various TM domain 2 (D2) plus domain 3 (D3) including TMD2 (EGF1-6) D3, TMD2 (EGF2-6) D3, TMD2 (EGF3-6) D3, TMD2 (EGF4-6) D3, TMD2 (EGF5-6) D3 and TMD2 (EGF6) D3. Each TM mutant contains two glycoforms [high molecular weight (high-Mw) and low molecular weight (low- Mw)]. The high-Mw TMDs were converted into low-Mw TMDs by chondroitinase ABC digestion. The high-Mw TMDs had higher ability to bind thrombin, to activate protein C, prolonged clotting time in a dose-dependent fashion, and had higher activity to promote human umbilical vein endothelial cell (HUVEC) proliferation and migration than low-Mw TMDs. High-Mw TMDs enhanced HaCaT wound healing in vitro and re-epithelialization during wound healing in vivo. The high-Mw proteins were administrated intravenously in mice 30 min before infusing LPS (lipopolysaccharide). The result showed that high-Mw protein dramatically inhibited LPS-induced serum TNF-α脉 and IL-6 elevation. In conclusion, these studies suggest that the extent of glycosylation had profound effects on the anticoagulant and skin wound healing properties of human TM. High-Mw TM also reduced mortality in sepsis animal model. We suggest that high-Mw TM proteins have potential to become useful therapeutic agents in the future.

    I. Abstract in Chinese 1 II. Abstract in English 2 III. Acknowledgement 3 IV. Contents 4 V. Contents of figures and tables 6 VI. Abbreviations 7 VII. Reagents 9 VIII. Instruments 13 IX. Introduction 15 A Anti-coagulation 17 B Angiogenesis 17 C Wound healing 18 D Pathophysiology of Sepsis 18 X. Specific Aim 19 XI. Materials and Methods A Polymerase chain reaction (PCR) 20 B Restriction enzyme digestion 20 C Gel extraction 21 D Ligation 22 E Transformation of E. coli 22 F Plasmid DNA Extraction 23 G Agarose Gel Electrophoresis 24 H HEK293 transfection and selection 24 I Expression of recombinant thrombomodulin with HEK293 26 J Anion exchanger chromatography 26 K Affinity Ni2+-chelating Sepharose chromatography 27 L Cell Culture 28 M Western Blotting 30 N Chemotaxis assay (Boyden chamber) 33 O Cell Proliferation Assay 34 P In vitro Matrigel Angiogenesis Assay 35 Q Thrombomodulin Activity Assay 35 R Thrombin Solid-phase Assay 37 S Thrombin Clotting Time 38 T Scratch Wound Healing Assay 38 U Mouse skin wound healing 39 V Animal model of LPS-induced acute inflammation 39 W Detection of inflammatory by ELISA 40 XII. Results 42 XIII. Discussion 47 XIV. References 51 XV. Figures 1 Preparation and purification of various human TM domains with HEK293 based mammalian expression system. 56 2 Western blot analysis and schematic representation of recombinant human TM 57 3 Effects of chondroitinase ABC on low-Mw and high-Mw TMD23 cofactor activity. 58 4 Thrombin solid phase assay of low-Mw and high-Mw TMD23 and various EGF-like structures. 59 5 Thrombomodulin protein C cofactor activity. 60 6 Effect of low-Mw and high-Mw TMDs on thrombin clotting time (TCT) assay. 61 7 Effects of low-Mw and high-Mw TMD23 on HUVECs proliferation and migration. 62 8 Effect of tube formation of HUVECs on Matrigel in vitro. 63 9 TMD23 enhance wound healing in vitro 64 10 Enhancement of skin wound healing in K5-Cre/TM Lox/Lox mice with low-Mw and high-Mw TMD23 treatment. 65 11 Effect of TMD23 on inflammatory mediator production in vivo. 66 12 Effect of TMD23 on lethality of LPS-induced inflammation in vivo. 67 XVI. Tables 1 Primer sequence of various TMD23 68 2 Bioinformation of various recombinant TMD23 proteins 69 XVII. Appendixes 1 Structure of thrombomodulin 70 2 Bioinformation of recombinant TMD proteins 71 3 Amino acid sequence of each EGF like human thrombomodulin 72 XVIII. Resume 73

    1. Weiler, H. & Isermann, B. Thrombomodulin. Journal of Thrombosis and Haemostasis 1, 1515-1524 (2003).
    2. Suzuki, K., et al. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. Embo J 6, 1891-1897 (1987).
    3. Petersen, T.E. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett 231, 51-53 (1988).
    4. Patthy, L. Detecting distant homologies of mosaic proteins. Analysis of the sequences of thrombomodulin, thrombospondin complement components C9, C8 alpha and C8 beta, vitronectin and plasma cell membrane glycoprotein PC-1. J Mol Biol 202, 689-696 (1988).
    5. McEver, R.P. Leukocyte interactions mediated by selectins. Thromb Haemost 66, 80-87 (1991).
    6. Lu, R.L., Esmon, N.L., Esmon, C.T. & Johnson, A.E. The active site of the thrombin-thrombomodulin complex. A fluorescence energy transfer measurement of its distance above the membrane surface. J Biol Chem 264, 12956-12962 (1989).
    7. Suzuki, K., et al. A domain composed of epidermal growth factor-like structures of human thrombomodulin is essential for thrombin binding and for protein C activation. J Biol Chem 264, 4872-4876 (1989).
    8. Zushi, M., et al. The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity. J Biol Chem 264, 10351-10353 (1989).
    9. Esmon, C.T. Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. Faseb J 9, 946-955 (1995).
    10. Takano, S., Kimura, S., Ohdama, S. & Aoki, N. Plasma thrombomodulin in health and diseases. Blood 76, 2024-2029 (1990).
    11. Yamamoto, S., et al. Urinary thrombomodulin, its isolation and characterization. J Biochem 113, 433-440 (1993).
    12. Ishii, H. & Majerus, P.W. Thrombomodulin is present in human plasma and urine. J Clin Invest 76, 2178-2181 (1985).
    13. Bourin, M.C., Lundgren-Akerlund, E. & Lindahl, U. Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J Biol Chem 265, 15424-15431 (1990).
    14. Edano, T., et al. Importance of sialic acid in recombinant thrombomodulin in terms of pharmacokinetics and separation of desialyzed glycoprotein. Biol Pharm Bull 21, 382-385 (1998).
    15. Dittman Wa, K.T.S.J.E.M.P.W. The structure and function of mouse thrombomodulin. Phorbol myristate acetate stimulates degradation and synthesis of thrombomodulin without affecting mRNA levels in hemangioma cells. J Biol Chem 263(30), 15815-15822 (1988).
    16. Maruyama I, M.P.W. The turnover of thrombin-thrombomodulin complex in cultured human umbilical vein endothelial cells and A549 lung cancer cells. Endocytosis and degradation of thrombin. J Biol Chem 260(29), 15432-15438 (1985).
    17. Nawa, K., et al. Presence and function of chondroitin-4-sulfate on recombinant human soluble thrombomodulin. Biochem Biophys Res Commun 171, 729-737 (1990).
    18. Boffa, M.C., Burke, B. & Haudenschild, C.C. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem 35, 1267-1276 (1987).
    19. Conway, E.M., Nowakowski, B. & Steiner-Mosonyi, M. Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood 80, 1254-1263 (1992).
    20. McCachren Ss, D.J.W.J.B.D.W.A. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78(12), 3128-3132 (1991).
    21. Suzuki, K., Nishioka, J., Hayashi, T. & Kosaka, Y. Functionally active thrombomodulin is present in human platelets. J Biochem 104, 628-632 (1988).
    22. Wong, V.L., Hofman, F.M., Ishii, H. & Fisher, M. Regional distribution of thrombomodulin in human brain. Brain Res 556, 1-5 (1991).
    23. Maruyama, I., Bell, C.E. & Majerus, P.W. Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J Cell Biol 101, 363-371 (1985).
    24. Maruno, M., et al. Expression of thrombomodulin in astrocytomas of various malignancy and in gliotic and normal brains. J Neurooncol 19, 155-160 (1994).
    25. Ikeda, T., et al. Localization of thrombomodulin in the anterior segment of the human eye. Invest Ophthalmol Vis Sci 41, 3383-3390 (2000).
    26. Daimon, T., Kazama, M., Miyajima, Y. & Nakano, M. Immunocytochemical localization of thrombomodulin in the aqueous humor passage of the rat eye. Histochem Cell Biol 108, 121-131 (1997).
    27. Soff, G.A., Jackman, R.W. & Rosenberg, R.D. Expression of thrombomodulin by smooth muscle cells in culture: different effects of tumor necrosis factor and cyclic adenosine monophosphate on thrombomodulin expression by endothelial cells and smooth muscle cells in culture. Blood 77, 515-518 (1991).
    28. Raife, T.J., et al. Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J Clin Invest 93, 1846-1851 (1994).
    29. Healy, A.M., Rayburn, H.B., Rosenberg, R.D. & Weiler, H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci U S A 92, 850-854 (1995).
    30. Esmon, C.T. & Owen, W.G. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci U S A 78, 2249-2252 (1981).
    31. Esmon, N.L., Carroll, R.C. & Esmon, C.T. Thrombomodulin blocks the ability of thrombin to activate platelets. J Biol Chem 258, 12238-12242 (1983).
    32. Owen, W.G. & Esmon, C.T. Functional properties of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. J Biol Chem 256, 5532-5535 (1981).
    33. Esmon, C.T. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 264, 4743-4746 (1989).
    34. Nesheim, M., et al. Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb Haemost 78, 386-391 (1997).
    35. Risau, W. Mechanisms of angiogenesis. Nature 386, 671-674 (1997).
    36. Liekens, S., De Clercq, E. & Neyts, J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol 61, 253-270 (2001).
    37. Munoz-Chapuli, R., Quesada, A.R. & Angel Medina, M. Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci 61, 2224-2243 (2004).
    38. Shi, C.S., et al. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation 111, 1627-1636 (2005).
    39. Singer, A.J. & Clark, R.A. Cutaneous wound healing. N Engl J Med 341, 738-746 (1999).
    40. Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet 366, 1736-1743 (2005).
    41. Martin, P. Wound healing--aiming for perfect skin regeneration. Science 276, 75-81 (1997).
    42. Artuc, M., Hermes, B., Algermissen, B. & Henz, B.M. Expression of prothrombin, thrombin and its receptors in human scars. Exp Dermatol 15, 523-529 (2006).
    43. Esmon, C.T. Coagulation inhibitors in inflammation. Biochem Soc Trans 33, 401-405 (2005).
    44. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885-891 (2002).
    45. Wenzel, R.P. Treating sepsis. N Engl J Med 347, 966-967 (2002).
    46. Hamada, H., et al. The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood 86, 225-233 (1995).
    47. Hayashi, T., Zushi, M., Yamamoto, S. & Suzuki, K. Further localization of binding sites for thrombin and protein C in human thrombomodulin. J Biol Chem 265, 20156-20159 (1990).
    48. Zushi, M., et al. Aspartic acid 349 in the fourth epidermal growth factor-like structure of human thrombomodulin plays a role in its Ca(2+)-mediated binding to protein C. J Biol Chem 266, 19886-19889 (1991).
    49. Tsiang, M., Lentz, S.R. & Sadler, J.E. Functional domains of membrane-bound human thrombomodulin. EGF-like domains four to six and the serine/threonine-rich domain are required for cofactor activity. J Biol Chem 267, 6164-6170 (1992).
    50. Honda, G., Masaki, C., Zushi, M., Tsuruta, K. & Sata, M. The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J Biochem 118, 1030-1036 (1995).
    51. Parkinson, J.F., et al. Stable expression of a secretable deletion mutant of recombinant human thrombomodulin in mammalian cells. J Biol Chem 265, 12602-12610 (1990).
    52. Murata, K. & Yokoyama, Y. Enzymatic analysis with chondrosulfatases of constituent disaccharides of sulfated chondroitin sulfate and dermatan sulfate isomers by high-performance liquid chromatography. Anal Biochem 149, 261-268 (1985).
    53. Hook, M., Kjellen, L. & Johansson, S. Cell-surface glycosaminoglycans. Annu Rev Biochem 53, 847-869 (1984).
    54. Esmon, C.T. Molecular events that control the protein C anticoagulant pathway. Thromb Haemost 70, 29-35 (1993).
    55. Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25 (1992).
    56. Yang, J., et al. Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J Cell Biol 165, 881-891 (2004).
    57. Iida, J., Skubitz, A.P., Furcht, L.T., Wayner, E.A. & McCarthy, J.B. Coordinate role for cell surface chondroitin sulfate proteoglycan and alpha 4 beta 1 integrin in mediating melanoma cell adhesion to fibronectin. J Cell Biol 118, 431-444 (1992).
    58. Ruoslahti, E. & Yamaguchi, Y. Proteoglycans as modulators of growth factor activities. Cell 64, 867-869 (1991).
    59. Clark, R.A., Ashcroft, G.S., Spencer, M.J., Larjava, H. & Ferguson, M.W. Re-epithelialization of normal human excisional wounds is associated with a switch from alpha v beta 5 to alpha v beta 6 integrins. Br J Dermatol 135, 46-51 (1996).
    60. Bentley, J.P. Rate of chondroitin sulfate formation in wound healing. Ann Surg 165, 186-191 (1967).
    61. Scott, J.E. Proteoglycan: collagen interactions in connective tissues. Ultrastructural, biochemical, functional and evolutionary aspects. Int J Biol Macromol 13, 157-161 (1991).
    62. Carcillo, J.A. & Cunnion, R.E. Septic shock. Crit Care Clin 13, 553-574 (1997).
    63. Piagnerelli, M., et al. Rapid alterations in transferrin sialylation during sepsis. Shock 24, 48-52 (2005).
    64. Taylor, F.B., Jr., Peer, G.T., Lockhart, M.S., Ferrell, G. & Esmon, C.T. Endothelial cell protein C receptor plays an important role in protein C activation in vivo. Blood 97, 1685-1688 (2001).
    65. Nimah, M. & Brilli, R.J. Coagulation dysfunction in sepsis and multiple organ system failure. Crit Care Clin 19, 441-458 (2003).
    66. Van Snick, J. Interleukin-6: an overview. Annu Rev Immunol 8, 253-278 (1990).
    67. Esmon, C. Do-all receptor takes on coagulation, inflammation. Nat Med 11, 475-477 (2005).

    無法下載圖示 校內:2029-07-27公開
    校外:2029-07-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE