簡易檢索 / 詳目顯示

研究生: 陳惠茹
Chen, Hui-Ju
論文名稱: 摻雜微量鈉於酞菁銅碳六十異質接面有機太陽能電池之研究
Study of Interfacial Sodium Doping in CuPc/C60-Based Heterojunction Organic Solar Cells
指導教授: 莊文魁
Chuang, Ricky Wenkuei
施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 有機小分子太陽能電池酞菁銅碳六十鹼金屬摻雜
外文關鍵詞: organic solar cell, CuPc, C60, doping
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究方向著重在三個部分。第一部分為鈉摻雜於異質接面有機太陽能電池的製作。採用CuPc (cooper phthalocyanine)、C60 (Fullerene) 當作主動層材料,BCP (Bathocuproine) 做為激子阻擋層,並使用鈉摻雜於CuPc/C60接面。元件結構為ITO/CuPc/Na/C60/BCP/Al,藉著調整鈉的摻雜量以及利用後退火方式來提升元件特性參數,在2.6 A,1 sec條件下的摻雜量達到元件的最佳效率。
    第二部分開始探討接面摻雜的影響機制,利用XPS分析以及載子遷移率的量測,來了解摻雜於CuPc與C60接面可能發生的電荷轉移或化學反應。
    第三部分藉由電容的量測分析,探討退火過程可能造成的濃度變化。
    此外,藉由電容的量測來得知元件的空乏寬度變化,來探討摻雜對接面電場強度的影響。

    Alkali metal doped CuPc has been reported to have marked energy level shifts. When the C60 is deposited on the CuPc that is doped with alkaline metal, interfacial dipoles form; the Fermi level shifts toward the lowest unoccupied molecular orbital (LUMO) of CuPc; the potential difference between highest occupied molecular orbital (HOMO)-CuPc and LUMO-C60 increased upon dop¬ing with potassium, indicating a possible increase in the open-voltage of OPVs. Moreover, the alkali metal forms n-type dopant in C60 films, enhancing the electrical conductivity. These facts make the studies of the alkali doped CuPc/C60 became potential for the application in photovoltaics.
    This study reports on the photovoltaic behaviors of CuPc/C60-based solar cells by incorporating Na at the donor–acceptor (D–A) interface. The research is novel and important because the PCE was doubled when little Na was doped at the D–A interface and the device was post-annealed (75 °C, 40 min). The effects of thermal annealing of the Na-doped devices were systematically studied. The transport behaviors of electron/hole only devices were measured, indicating that the ratio of electron/hole mobility became unity when thermal annealing was performed. Capacitance-voltage relation of the device with and without Na doping was measured, revealing that the Na doping reduced the depletion depth because of the formation of the interfacial dipoles.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 太陽能產業之發展 2 1-2-1 無機太陽能電池 2 1-2-2 有機太陽能電池 3 1-3 有機太陽能電池之結構 3 1-3-1 單層接面有機太陽能電池 3 1-3-2 P-N異質接面有機太陽能電池 4 1-3-3染料敏化太陽能電池 6 1-4 CuPc/C60相關文獻 7 1-5 研究動機 9 1-6 論文架構及研究方向 9 第二章 理論基礎 11 2-1 有機材料與無機材料之特性比較 11 2-2 光電轉換原理 12 2-2-1 光吸收產生激子 13 2-2-2 激子的漂移 13 2-2-3 激子的分離 15 2-2-4 電荷傳輸與收集 15 2-2-5 外部量子效率 (External Quantum Efficiency,ηEQE) 17 2-3 太陽能電池等效電路 17 2-4 光電特性參數 19 2-4-1 短路電流 (Short- circuit Current, Isc) 19 2-4-2 開路電壓 (Open- circuit Voltage, Voc) 20 2-4-3 填充因子 (Fill Factor) 20 2-4-4 功率轉換效率 (Power Conversion Efficiency, PCE) 21 2-5 空間電荷侷限電流 (Space Charge Limited Current,SCLC) 22 第三章 實驗流程 25 3-1 材料選擇 25 3-1-1 酞菁銅 (Cooper Phthalocyanine, CuPc) 25 3-1-2 碳六十 (Fullerene, C60 ) 26 3-1-3 鈉 (sodium, Na) 26 3-1-4 Bathocuproine (BCP) 26 3-2 ITO玻璃清洗與圖樣化 27 3-2-1 ITO玻璃清洗 27 3-2-2 ITO表面圖樣化 28 3-3 實驗流程 30 3-3-1電池元件製作 30 3-3-2 ITO玻璃清洗 31 3-3-3 熱蒸鍍主動層 31 3-3-4 激子傳輸阻擋層之熱蒸鍍 32 3-3-5 熱蒸鍍鋁電極 32 3-3-6 元件封裝和退火 32 3-4 摻雜鹼金屬鈉於太陽能電池元件 33 3-4-1 材料外氣釋放 (Material Outgassing) 33 3-4-2 摻雜之實驗流程 33 3-4-3 定義鈉含量 34 3-5 載子遷移率量測 35 3-5-1 元件製作原理 35 3-5-2 Hole-only Device 35 3-5-3 Electron-only Device 36 3-6 電性量測 36 3-6-1 電流-電壓量測 ( I-V ) 36 3-6-2 電容-電壓量測 ( C-V ) 36 3-7 材料分析 37 3-7-1 X光光電子能譜儀量測 (X-ray photoelectron spectroscopy) 37 第四章 結果與討論 38 4-1 前言 38 4-1-1元件特性比較 38 4-1-2元件特性討論 45 4-2 前言 48 4-2-1 X光光電子能譜儀量測 ( X-ray photoelectron spectroscopy) 48 4-2-2 載子遷移率量測 51 4-2-3 分析討論 56 4-3前言 56 4-3-1電容-電壓量測 (C-V) 56 4-3-2電容-電壓量測討論 61 第五章 結果與未來規劃 66 5-1 結論 66 5-2 未來規劃 67 文獻回顧 68

    1.楊德仁,“太陽能電池材料”五南圖書出版社(2008)。
    2.蔡孟諺,“有機薄膜太陽能電池簡介” 中華民國 98 年 10 月 31 日出版。
    3.郭嘉謨,“染料敏化型太陽能電池的研究開發現狀和展望”材料世界網。
    4.J. Xue et al.,“4.2% efficient organic photovoltaic cells with low series resistances”, Appl. Phys. Lett.84,3013 (2004).
    5.S. Uchida et al.,“Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer”, Appl. Phys. Lett.84,4218 (2004).
    6.J. Xue et al., “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions” ,Appl. Phys. Lett.85,5757 (2004)
    7.C. P. Cheng et al., “Interfacial electronic structures of C60 molecules on a K-doped CuPc surface “ Appl. Phys. Lett.,94,203303 (2009).
    8.R. H. Friend, “Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites”Nature (London) 397, 121 (1999).
    9.S. M. Sze ,“Semiconductor Devices-physics and Technology” p90
    10.黃桂武,“共軛性導電高分子材料技術簡介”工業材料雜誌288期2010年12 月。
    11.S.S. Sun et al., “Organic Photovoltaics (Mechanisms, Materials and Devices)” p.189.
    12.C. Brabec et al. “Organic Photovoltaics (Concepts and REALIZATION)”.
    13.S. S. Sun et al. “Organic Photovoltaics (Mechanisms, Materials and Devices)”.
    14.R. H. Friend et al., “Electroluminescence in conjugated polymers”, Nature ,397, 121 (1999).
    15.W. Clemens et al., “From polymer transistors toward printed electronics” , J. Mater. Res 19, 1963 (2004).
    16.G. Horowitz et al., “Organic thin film transistors: From theory to real devices”, J. Mater. Res 19, 1946 (2004).
    17.H. Hoppe et al., “Organic solar cells: An overview” , J. Mater. Res 19, 1924 (2004).
    18.C.P. Cheng et al., “Interfacial electronic structures of C60 molecules on a K-doped CuPc surface “, Appl. Phys. Lett.,94,203303 (2009).
    19.J. Huang et al., “A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process”, Adv. Mater., 20, 415-419(2008).
    20.汪建民,“材料分析”,中國材料科學學會(1998)。
    21.王志方,“材料表面測定技術”,復漢出版社(1999)。
    22.黃振昌,“X光光電子能譜儀”行政院國家科學委員會精密儀器發展中心
    出版(1998)。
    23.R. C. Haddon et al.,“Conducting films of C60 and C70 by alkali-metal doping”, Nature, 350, (1991).
    24.Y. Gao et al., “Cs doping and energy level shift in CuPc”, Chemical Physics Letters, 380, 451 (2003).
    25.C.P. Cheng et al., “Interfacial electronic structures of C60 molecules on a K-doped CuPc surface” Appl. Phys. Lett., 94, 203303 (2009).
    26.H. Ding, et al., “Electronic structure modification of copper phthalocyanine (CuPc) induced by intensive Na doping” Chemical Physics Letters 454, 229 (2008).
    27.S. M. Sze, “Semiconductor devices physics and technology” p.155.
    28.X. Y. Zhu et al., “Charge-Transfer Excitons at Organic Semiconductor Surfaces and Interfaces” ,Accounts of Chemical Research, 1779 (2009).

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE