簡易檢索 / 詳目顯示

研究生: 黃立賢
Huang, Li-Hsien
論文名稱: 以光電化學氧化法成長氮化鋁鎵/氮化鎵金屬-氧化物-半導體高速電子移動率場效電晶體閘極氧化層之製作與研究
Fabrication and investigation of AlGaN/GaN metal-oxide-semiconductor high-electron mobility field-effect transistors with gate insulators grown using PEC oxidation method
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 102
中文關鍵詞: 光電化學氧化法氮化鋁鎵/氮化鎵
外文關鍵詞: PEC oxidation method, AlGaN/GaN
相關次數: 點閱:112下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,以光電化學氧化法直接對氮化鋁鎵進行反應形成氧化層。藉由X光繞射儀、X光光電子能譜儀及二次離子質譜儀,分析以光電化學氧化法反應氮化鋁鎵所形成之薄膜成分,確定所成長的薄膜是由氧化鎵與氧化鋁所組成之氧化物。氧化層中含有少量的氧-磷鍵結,這是由於反應時所使用的電解液為磷酸所導致。初始成長的氧化層不耐顯影液以及酸鹼溶液,不易應用於接下來的元件製程。為了克服此問題,利用高溫爐對初成長之氧化層進行700oC、氧氣氛圍、2小時的熱處理。由X光繞射圖譜中可以發現,氧化層經熱處理後,出現-Ga2O3 以及 -Al2O3等晶相,不但耐酸鹼且適用於元件製作。將此熱處理後之氧化層應用於氮化鋁鎵金屬-氧化物-半導體二極體閘極氧化層,厚度為45nm,其介面態位密度、順偏崩潰電場與逆偏崩潰電場分別為5.11011cm–2eV–1、2.2MV/cm與6.6MV/cm。由上述數據顯示,以光電化學氧化法氧化氮化鋁鎵得到之氧化層,經熱處理後具有良好的絕緣性與具低介面態位密度之介面。
    將此氧化層作為氮化鋁鎵/氮化鎵金屬-氧化物-半導體高速電子移動率場效電晶體之閘極氧化層,熱處理後的氧化層厚度為45nm。電晶體之閘極長度與閘極寬度分別為3m與300m。閘極偏壓0V時的汲源極飽和電流為200mA/mm;當閘極電壓為–2.09V,汲源極電壓為10V時,元件最大外部互導值為50mS/mm,閘極電壓擺幅為2.4V。元件操作在閘源極偏壓0V時的電流開關比為123.7。當元件閘極偏壓為10V與10V時,閘極漏電流分別為50pA與2pA。
    為了分析電晶體之高頻特性,製作具有閘極長度1m、閘極寬度50m之雙指電極、熱處理後氧化層厚度為40nm的氮化鋁鎵/氮化鎵金屬-氧化物-半導體高速電子移動率場效電晶體。閘極偏壓0V時的汲源極飽和電流為580mA/mm;當閘極電壓為–5.1V,汲源極電壓為10V時,元件最大外部互導值為76.72mS/mm,閘極電壓擺幅為2.6V。元件操作在閘源極偏壓0V時的電流開關比為134。元件之順偏崩潰電壓為25V,逆偏崩潰電壓大於–100V。即使元件操作在閘源極偏壓為20V與60V時,漏電流也只有960nA與102nA。在高頻特性方面,元件的電流增益截止頻率及最大震盪頻率分別為5.6GHz及10.6GHz。為了解溫度對氮化鋁鎵/氮化鎵金屬-氧化物-半導體高速電子移動率場效電晶體特性的影響,故量測在不同溫度下的電晶體直流電特性。當溫度在200oC時, 閘極偏壓0V時的飽和電流與最大外部互導值只有408mA/mm與46.83mS/mm。這是由於高溫時,載子移動率會受聲子影響而降低,導致飽和電流與最大外部互導值的降低。此外,元件的漏電流在高溫下也增加,這是由於通道中的電子具有足以穿隧過氧化層的能量。
    最後,進行量測並分析氮化鋁鎵/氮化鎵金屬-氧化物-半導體高速電子移動率場效電晶體元件在線性區及飽和區的低頻雜訊特性。從標準化之低頻雜訊強度頻譜中可以發現,在4Hz到10kHz的頻率範圍中,低頻雜訊呈現良好的1/f的配湊趨勢。不同閘極偏壓下之值皆趨近於1。當閘極偏壓為–8V與1V時,線性區(VDS2V)計算所得的虎格常數分別為4.63*10–4 與 3.16*10–4。當閘極偏壓為–8V與1V時,飽和區(VDS10V)計算所得的虎格常數分別為8.79*10–4 與 9.32*10–4。

    In this thesis, the photoelectrochemical (PEC) oxidation method was used to oxidize AlGaN directly forming insulators. According to the measured results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS), the as-grown films were indeed oxide layers which was consisted of Ga2O3 and Al2O3. There are few O-P bonds existed inner the oxide films because the electrolytic solution used in the PEC reaction is H3PO4. It is difficult to use the as-grown oxide films in the following device process because they dissolved easily in developer, alkaloid solutions and acid solutions. To overcome this problem, the as-grown oxide layer was annealed at 700oC in O2 ambient for 2 hours using furnace system. After the annealing process, the -Ga2O3 and -Al2O3 crystalline phases can be found in XRD patterns and the annealed oxide films were suitable for the following device process because they do not dissolve in developer, alkaloid solutions and acid solutions. The interface-state density, forward breakdown field and reverse breakdown field of the resulted AlGaN metal-oxide-semiconductor diodes with 45-nm-thick annealed gate insulators grown using the PEC oxidation method was 5.11011cm–2eV–1, 2.2MV/cm, and 6.6MV/cm, respectively. According to the results mentioned above, the oxide films grown using PEC oxidation method after proper annealing treatment have good insulations and interfaces with low interface-state density.
    The 45-nm-thick annealed oxide films were also used for gate insulation and surface passivation of AlGaN/GaN metal-oxide-semiconductor high-electron mobility field-effect transistors. The gate length and gate width was 3m and 300m, respectively. The drain-source current in saturation region (IDSS) at VGS0V was 200mA/mm and the maximum extrinsic transconductance was 50mS/mm obtained at VGS–2.09V and VDS10V. The gate voltage swing (GVS) was 2.4V. The Ion/Ioff ratio of the AlGaN/GaN MOS-HEMTs operated at VGS0V was 123.7. When the gate bias was 10V and 10V, the gate leakage current was only 50pA and 2pA, respectively.
    To realize the high-frequency performances of AlGaN/GaN metal-oxide-semiconductor high-electron mobility field-effect transistors, the transistors with 40-nm-thick annealed gate insulators and 1-m-long and 50-m-width two-finger gate pads were also fabricated. The IDSS at VGS0V was 580mA/mm and the maximum extrinsic transconductance of 76.72mS/mm was obtained at VGS–5.1V and VDS10V. The gate voltage swing (GVS) was 2.6V. The Ion/Ioff ratio of the AlGaN/GaN MOS-HEMTs operated at VGS0V was 134. The forward breakdown voltage and reverse breakdown voltage was 25V, and larger than –100V, respectively. Even operated at gate bias of 20V and 60V, the gate leakage current was only 960nA and 102nA, respectively. The unity current gain cutoff frequency (fT) and maximum frequency of oscillation (fmax) is 5.6GHz and 10.6GHz, respectively. To analyze the temperature dependence upon the performances of AlGaN/GaN metal-oxide-semiconductor high-electron mobility field-effect transistors, the direct-current (DC) electrical properties were measured at various temperatures. At 200oC, it can be seen that the IDSS at VGS=0V and the maximum extrinsic transconductance was only 408mA/mm and 46.83mS/mm, respectively. The decay of the IDSS and gm(max) was attributed to the decrease of the carrier mobility which was influenced by obvious phonons at high temperature. In addition, the gate leakage currents were also increased at high temperature because the electrons in the channel have enough energy for tunneling through the oxide layers.
    Finally, the low frequency noise in the linear region and saturation region of AlGaN/GaN metal-oxide-semiconductor high-electron mobility field-effect transistors were also measured and analyzed. The low frequency noise in the frequency ragne from 4Hz to 10kHz was fitted well by 1/f law as shown in the normalized noise power density spectra. In addition, the  values of 1/f fitting line at various gate-source biases were all close to unity. The Hooges coefficient (ch) was 4.63*10–4 and 3.16*10–4 in linear region (VDS=2V) when the gate bias was 8V and 1V, respectively. The Hooges coefficient (ch) is 8.79*10–4 and 9.32*10–4 in saturation region (VDS=10V) when the gate bias was -8V and 1V, respectively.

    Abstract (in Chinese)…………………………………………………….I Abstract (in English)……………………………………………………IV CHAPTER 1 Introduction……………………………………………….1 1.1 The motivation………………………………………………...…1 1.2 Overview of this dissertation……………………………………3 CHAPTER 2 Theory ……………………………………………………10 2.1 The advantages of GaN-based semiconductors………………10 2.2 The photoelectrochemical (PEC) oxidation method…………10 2.3 Secondary ion mass spectrometry (SIMS)…………………….12 2.4 X-ray diffraction (XRD)……………………………….…….....13 2.5 X-ray photoelectron spectroscopy (XPS)……………………...14 2.6 The operating theory of AlGaN/GaN MOS-HEMTs………….15 2.7 The theory of S-parameter measurement …………….…..…..16 2.8 The model of low frequency noise (1/f noise)… ………..……..18 CHAPTER 3 Device Fabrication……………………………………..…37 3.1 The PEC oxidation system……………………………………...37 3.2 The process of samples used in SIMS, XPS, and XRD measurement…………………………………………………….37 3.3 The device process of the AlGaN MOS diodes………………..40 3.4 The device process of the AlGaN/GaN MOS-HEMTs………..40 CHAPTER 4 Experimental Results and Discussions..………………...52 4.1 The analysis of the oxidized AlGaN films using XRD, XPS, and SIMS system………………………………………….52 4.1.1 The results of XRD measurement………………………52 4.1.2 The results of XPS measurement……………………....53 4.1.3 The results of SIMS measurement…………………......54 4.2 The performances of AlGaN MOS diodes…………………….55 4.2.1 Current-voltage characteristics………………………….55 4.2.2 Photo-assisted capacitance-voltage characteristics……..56 4.3 The performances of AlGaN/GaN MOS-HEMTs…………..……58 4.3.1 DC electrical performances………………………………58 4.4 The performances of AlGaN/GaN MOS-HEMTs with 1-m-long and 50-m-width two-finger gate pads…………………………..60 4.4.1 DC electrical performances………………………………..60 4.4.2 DC electrical performances at varied temperatures……..61 4.4.3 S-parameter measurement……………………………...…62 4.4.4 Low frequency noise measurement……………………….63 CHAPTER 5 Conclusion………………………………………………..98 Future work……………………………………………..101 Table Captions Table 2.1 The comparisons of the PEC oxidation method with other deposition methods. Table 2.2 The comparisons of GaN-based MOSFETs, MOS-HEMTs and HEMTs. Table 4.1 The comparisons of the dc performances of AlGaN/GaN MOS-HEMTs and HEMTs. Figure Captions Fig. 2.1 The schematic configuration of the photoelectrochemical (PEC) oxidation system. Fig. 2.2 The energy band diagram of the electrolytic solution/n-GaN. Fig.2.3 The schematic configuration of the secondary ion mass spectrometry (SIMS) system. Fig. 2.4 The diagram of the Bragg law. Fig. 2.5 (a)The schematic configuration of / scan mode. (b) The schematic configuration of /2 scan mode. Fig. 2.6 The basic principle of the photoelectron effect. Fig. 2.7 The energy band diagram of the AlGaN/GaN heterojunction. Fig. 2.8 The small signal representation using the two port network of (a) a three terminal transistor. (b) a FET operated in common source configuration. (c) with source and load impedance. Fig. 3.1 The schematic configuration of the PEC oxidation method used in this experiment. Fig. 3.2 The energy band diagram of the H3PO4/n-AlGaN. Fig. 3.3 The oxide thickness as a function of oxidation time. Fig. 3.4 The cross-sectional schematic configuration of the oxidized AlGaN sample. Fig. 3.5 The cross-sectional schematic configuration of the fabricated AlGaN MOS diodes. Fig. 3.6 The schematic configuration of AlGaN/GaN MOS-HEMTs. Fig. 3.7 The schematic configuration of AlGaN/GaN MOS-HEMTs with two-finger gate pads. Fig. 4.1 The XRD patterns of oxidized AlGaN layer without annealing treatment. Fig. 4.2 The XRD patterns of the difference of original sample and oxidized AlGaN layer annealed at 700oC in O2 ambient for 2 hr. Fig. 4.3 The XPS spectra of oxidized AlGaN layer with and without annealing treatment. Fig. 4.4 The SIMS depth profile of as-grown oxidized AlGaN films. Fig. 4.5 The current-voltage characteristics of AlGaN MOS diodes. Fig. 4.6 The current-voltage characteristics of AlGaN MOS diodes for enlarged current range. Fig. 4.7 The photo-assisted capacitance-voltage characteristics of AlGaN MOS diodes. Fig. 4.8 The drain-source current (IDS) as a function of drain-source voltage (VDS) of AlGaN/GaN MOS-HEMTs. Fig. 4.9 The drain-source current (IDS) and extrinsic transconductance (gm) as a function of gate-source voltage (VGS) of AlGaN/GaN MOS-HEMTs. Fig. 4.10 The gate leakage current (IGS) as a function of gate-source voltage (VGS) of AlGaN/GaN MOS-HEMTs. Fig. 4.11 The drain-source current (IDS) as a function of drain-source voltage (VDS) of AlGaN/GaN MOS-HEMTs with two-finger gate pads. Fig. 4.12 The drain-source current (IDS) and extrinsic transconductance (gm) as a function of gate-source voltage (VGS) of AlGaN/GaN MOS-HEMTs with two-finger gate pads. Fig. 4.13 The gate leakage current (IGS) as a function of gate-source voltage (VGS) of AlGaN/GaN MOS-HEMTs with two-finger gate pads. Fig. 4.14 The drain-source current (IDS) as a function of drain-source voltage (VDS) at 75oC of AlGaN/GaN MOS-HEMTs with two-finger gate pads. Fig. 4.15 The drain-source current (IDS) as a function of drain-source voltage (VDS) at 125oC of AlGaN/GaN MOS-HEMTs with two-finger gate pads. Fig. 4.16 The drain-source current (IDS) as a function of drain-source voltage (VDS) at 200oC of AlGaN/GaN MOS-HEMTs with two-finger gate pads. Fig. 4.17 The extrinsic transconductance (gm) as a function of gate-source voltage (VGS) at varied temperatures of AlGaN/GaN MOS-HEMTs with two-finger gate pads. Fig. 4.18 The gate leakage current (IGS) as a function of gate-source voltage (VGS) at varied temperatures of AlGaN/GaN MOS-HEMTs with two-finger gate pads. Fig. 4.19 The drain-source saturation current at VGS0V and gm(max) as a function of varied temperatures. Fig. 4.20 The short-circuit current gain (h21) and maximum available power gain (Gmax) of AlGaN/GaN MOS-HEMTs derived from S-parameter measurement. Fig. 4.21 (a) The normalized noise power spectra in linear region of AlGaN/GaN MOS-HEMTs at various VGS as a function of frequency. (b) The normalized noise power spectra in saturation region of AlGaN/GaN MOS-HEMTs at various VGS as a function of frequency. Fig. 4.22 (a) The normalized noise power spectra in linear region as a function of effective gate bias. (b) The normalized noise power spectra in saturation region as a function of effective gate bias. Fig. 4.23 The exponent  of the 1/f noise spectral density as a function of gate-source bias. Fig. 4.24 The noise power density as a function of drain-source biases at VGS=0V.

    Chapter 1
    [1] J. Piprek, R. Farrell, S. DenBarrs, and S. Nakamura, “Effects of build-in polarization on InGaN/GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 18, pp. 7-9, 2006.
    [2] P. S. Chen, C. S. Lee, J. T. Yan, and C. T. Lee, “Performance improvement and mechanism of chlorine-treated InGaN–GaN light-emitting diodes,” Electrochem. Solid-State Lett., vol. 10, pp. H165-H167, 2007.
    [3] M. Higashiwaki, T. Mimura, and T. Matsui, “30-nm-Gate AlGaN/GaN heterostructure field-effect transistors with a current-gain cutoff frequency of 181 GHz,” Jpn. J. Appl. Phys., vol. 45, pp. L1111-L1113, 2006.
    [4] M. Higashiwaki, T. Mimura, and T. Matsui, “AlN/GaN insulated-gate HFETs using Cat-CVD SiN,” IEEE Electron Device Lett., vol. 27, pp. 719-721, 2006.
    [5] T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN high electron mobility transistors with InGaN back-barriers,” IEEE Electron Device Lett., vol. 27, pp. 13-15, 2006.
    [6] R. Chu, Y. Zhou, J. Liu, D. Wang, K. J. Chen, and K. M. Lau, “AlGAN-GaN double-channel HEMTs,” IEEE Trans. Electron Devices, vol. 52, pp. 438-446, 2005.
    [7] Y. Ohno, and M. Kuzuhara, “Applications of GaN-based heterojunction FETs for advanced wireless communication,” IEEE Trans. Electron Devices, vol. 48, pp. 517-523, 2001.
    [8] K. Makiyama, T. Ohki, Masahito, K. Imanishi, N. Hara, and T. Kikkwaw, “High-fmax GaN HEMT with breakdown voltage over 100 V for millimeter-wave application,” Phys. Stat. Sol. (a), vol. 204, pp. 2054-2058, 2007.
    [9] M. Marso, G. Heidelberger, K. M. Indlekofer, J. Bernt, A. Fox, P. Kordoš, and H. Lth, “Origin of improved RF performance of AlGaN/GaN MOSFETs compared to HEMTs,” IEEE Trans. Electron Devices, vol. 53, pp. 1517-1523, 2006.
    [10] A. Endoh, Y. Yamashita, N. Hirose, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, “High performance AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors fabricated using SiN/SiO2/SiN triple-layer insulators,” Jpn. J. Appl. Phys., vol. 45, pp. 3364-3367, 2006.
    [11] C. K. Wang, R. W. Chuang, S. J. Chang, Y. K. Su, S. C. Wei, T. K. Lin, T. K. Ko, Y. Z. Chiou, and J. J. Tang, “High temperature and high frequency characteristics of AlGaN/GaN MOS-HEMTs with photochemical vapor deposition SiO2 layer,” Mater. Sci. and Eng. B., vol. 119, pp. 25-28, 2005.
    [12] D. Gregušov, R. Stoklas, K. Čičo, T. Lalinskŷ, and p. Kordoš, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with 4nm thick Al2O3 gate oxide,” Semicond. Sci. Technol., vol. 22, pp. 947-951, 2007.
    [13] B. P. Gila, F. Ren, and C. R. Abernathy, “Novel insulators for gate dielectrics and surface passivation of GaN-based electronic devices”, Mater. Sci. and Eng. R., vol. 44, pp. 151-184, 2004.
    [14] M. Asifkhan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor”, IEEE Electron Device Lett., vol. 21, pp. 63-65, 2000.
    [15] J. Kuzmik, G. Pozzovivo, S. Abermann, J. F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, E. Bertagnolli, G. Strasser, and D. Pogany, “Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2,” IEEE Trans. Electron Devices, vol. 55, pp. 937-941, 2008.
    [16] T. Hashizume, S. Ootomo, and H. Hasegawa, “Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric,” Appl. Phys. Lett., vol. 83, pp. 2952-2954, 2003.
    [17] P. Kordoš, D. Gregušov, K. Čičo, and J. Novk, “Improved transport properties of Al2O3/AlGaN/Gan metal-oxide-semiconductor heterostructure field-effect transistor,” Appl. Phys. Lett., vol. 90, pp. (123513-1)-(123513-3), 2007.
    [18] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride,” Appl. Phys. Lett., vol. 84, pp. 613-615, 2004.
    [19] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., vol. 86, pp. (063501-1)-(063501-3), 2005.
    [20] S. Arulkumaran, T. Egawa, and H. Ishikawa, “Studies of electron beam evaporated SiO2/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors,” Jpn. J. Appl. Phys., vol. 44, pp. L812-L815, 2005.
    [21] C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., vol. 71, pp. 2151-2153, 1997.
    [22] C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, “Investigation of Ga oxide films directly grown on n-type GaN by photoelectrichemical oxidation using He-Cd laser,” J. Electron. Mater., vol. 34, pp. 282-286, 2005.
    [23] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306, 2003.
    [24] C. T. Lee, H. Y. Lee, and H. W. Chen, “GaN MOS devices using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method,” IEEE Electron Device Lett., vol. 24, pp. 54-56, 2003.
    Chapter 2
    [1] C. Youtsey, and I. Adesida, “Highly anisotropic photoenhanced wet etching of n-type GaN,” Appl. Phys. Lett., vol. 71, pp. 2151-2153, 1997.
    [2] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, and J. Graul, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions,” Appl. Phys. Lett., vol. 76, pp. 3923-3925, 2000.
    [3] C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, “Investigation of Ga oxide films directly grown on n-type GaN by photoelectrichemical oxidation using He-Cd laser,” J. Electron. Mater., vol. 34, pp. 282-286, 2005.
    [4] L. H. Huang, K. C. Kan, and C. T. Lee, “Analysis of oxidized p-GaN films directly grown using bias-assisted photoelectrochemical method,” J. Electron. Mater., (Accepted).
    [5] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306, 2003.
    [6] C. T. Lee, H. Y. Lee, and H. W. Chen, “GaN MOS devices using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method,” IEEE Electron Device Lett., vol. 24, pp. 54-56, 2003.
    [7] L. C. Feldman, and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis, North-Holland, New York:Academic, 1986.
    [8] J. M. Walls, Methods of Surface Analysis, Cambridge University Press, Cambridge, 1989.
    [9] D. Fu, and T. W. Kang, “Electrical properties of gallium oxide grown by photoelectrochemical oxidation of GaN epilayers,” Jpn. J. Appl. Phys., vol. 41, pp. L1437-1439, 2002.
    [10] A. Matraszek, L. Singheiser, D. Kobertz, K. Hilpert, M. Miller, O. Schulz, and M. Martin, “Phase diagram study in the La2O3-Ga2O3-MgO-SrO system in air,” Solid-State Ionics, vol. 166, pp. 343-350, 2004.
    [11] E. Ozensoy, C. H. F. Peden, and J. Szanyi, “Low temperature H2O and NO2 coadsorption on -Al2O3/NiAl(100) ultrathin films,” J. Phys. Chem. B., vol. 110, pp. 8025-8034, 2006.
    [12] Z. J. Han, B. K. Tay, and P. C. T. Ha, “XPS studies on aluminum ions modified polyimide with the PIII technique,” J. Appl. Phys., vol. 101, pp. (053301-1)-(053301-7), 2007.
    [13] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, 1999.
    [14] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334-344, 2000.
    [15] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaar, J. S. Speck, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam expitaxy,” J. Appl. Phys., vol. 86, pp. 4520-4526, 1999.
    [16] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, pp. 450-457, 2001.
    [17] H. Okita, K. Kaifu, J. Mito, T. Yamada, Y. Sano, H. Ishikawa, T. Egawa, and T. Jimbo, “High transconductance AlGaN/GaN-HEMTs with recessed gate on sapphire substrate,” Phys. Stat. Sol. (a), vol. 200, pp. 187-190, 2003.
    [18] V. Kumar, A. Kuliev, R. Schwindt, M. Muir, G. Simin, J. Yang, M. Asifkhan, and I. Adesida, “High performance 0.25m gate-length AlGaN/GaN HEMTs on sapphire with power density of over 4.5W/mm at 20GHz,” Solid-State Electron., vol. 47, pp. 1577-1580, 2003.
    [19] T. Kikkawa, “Highly reliable 250W GaN high electron mobility transistor power amplifier,” Jpn. J. Appl. Phys., vol. 44, pp. 4896-4901, 2005.
    [20] D. Ducatteau, A. Minko, V. Hol, E. Morvan, E. Delos, B. Grimbert, H. Lahreche, P. Bove, C. Gaquire, J. C. De Jaeger, and S. Delage, “Output power density of 5.1W/mm at 18GHz with an AlGaN/GaN HEMTs on Si substrate,” IEEE Electron Device Lett., vol. 27, pp. 7-9, 2006.
    [21] L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f noise in MOS devices, mobility or number fluctuation?,” IEEE Trans. Electron Devices, vol. 41, pp. 1936-1945, 1994.
    [22] D. V. Kuksenkov, H. Temkin, R. Gaska, and J. W. Yang, “Low-frequency noise in AlGaN/GaN heterostructure field effect transistors,” IEEE Electron Device Lett., vol. 19, pp. 222-224, 1998.
    [23] F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron Devices, vol. 41, pp. 1926-1935, 1994.
    [24] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, pp. 479-531, 1981.
    [25] A. L. McWhorter, “1/f noise and germanium surface properties,” Semiconductor Surface Physics, Philadephia PA, University of Pennsylvania Press, pp. 207-228, 1957.
    [26] A. van der Ziel, “Flicker noise in electronic devices,” Advances in Electronics and Electron Physics, New York:Academic, vol. 49, pp. 225-297, 1979.
    [27] C. Surya, and T. Y. Hsiang, “A thermal activation model for 1/f noise in Si-MOSFETs,” Solid-State Electron., vol. 31, pp. 959-964, 1988.
    [28] W. Y. Ho, C. Surya, K. Y. Tong, W. Kim, A. E. Botcharev, and H. Morkoc, “Characterization of flicker noise in GaN-based MODFETs at low drain bias,” IEEE Trans. Electron Devices, vol. 46, pp. 1099-1104,1999.
    [29] S. L. Rumyantsev, N. Pala, M. S. Shur, M. E. Levinshtein, A. Asifkhan, G. Simin, and J. Yang, “Low frequency noise in GaN/AlGaN heterostructure field effect transistors in non-ohmic region,” J. Appl. Phys., vol. 93, pp. 10030-10034, 2003.
    [30] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asifkhan, G. Simin, X. Hu, and J. Yang, “Low frequency noise of GaN metal semiconductor and metal oxide semiconductor field effect transistor,” J. Appl. Phys., vol. 90, pp. 310-314, 2001.
    [31] S. K. Jha, C. Surya, K. J. Chen, K. M. Lau, and E. Jelencovic, “Low-frequency noise properties of double channel AlGaN/GaN HEMTs,” Solid-State Electron., vol. 52, pp. 606-611, 2008.
    [32] S. L. Rumyantsev, Y. Deng. S. Shur, M. E. Levinshtein, M. Asifkhan, G. Simin, J. Yang, X. Hu, and R. Gaska, “On the low frequency noise mechanisms in GaN/AlGaN HFETs,” Semicond. Sci. Technol., vol. 18, pp. 589-593, 2003.
    [33] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, P. A. Ivanov, M. Asifkhan, G. Simin, X. Hu, and J. Yang, “Concentration dependence of the 1/f noise in AlGaN/GaN heterostructure field effect transistors,” Semicond. Sci. Technol., vol. 17, pp. 476-479, 2002.
    [34] C. Y. Chan, T. C. Lee, S. S. H. Hsu, L. Chen, and Y. S. Lin, “Impacts of gate recess and passivation on AlGaN/GaN high electron mobility transistors,” Jpn. J. Appl. Phys., vol. 46, pp. 478-484, 2007.
    Chapter 3
    [1] H. O. Finklea, Semiconductor Electrodes (Netherlands, Amsterdam: Elsevier Science (1988).
    [2] C. T. Lee, and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au ohmic contacts to n-type GaN”, Appl. Phys. Lett., vol. 76, pp. 2364-2366, 2000.
    [3] C. T. Lee, Y. J. Lin, and C. H. Lin, “Nonalloyed ohmic mechanism of TiN interfacial layer in Ti/Al contact to (NH4)2Sx-treated n-type GaN layers”, J. Appl. Phys., vol. 92, pp. 3825-3829, 2002.
    [4] L. H. Huang, and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with oxidized layer grown using photoelectrochemical oxidation method,” J. Electrochem. Soc., vol. 154, pp. H862-H866, 2007.
    Chapter 4
    [1] L. H. Huang, and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with oxidized layer grown using photoelectrochemical oxidation method,” J. Electrochem. Soc., vol. 154, pp. H862-H866, 2007.
    [2] Y. J. Lin, C. D. Tsai, Y. T. Lyu, and C. T. Lee, “X-ray photoelectron spectroscopy study of (NH4)2SX-treated Mg-doped GaN layers,” Appl. Phys. Lett., vol. 77, pp. 687-689, 2000.
    [3] I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B., vol. 135, pp. 108-112, 2006.
    [4] F. Tourtin, P. Armand, A. Ibanez, G. Tourillon, and E. Philippot, “Gallium phosphate thin solid films: structural and chemical determination of the oxygen surroundings by XANES and XPS,” Thin-Solid Films, vol. 322, pp. 85-92, 1998.
    [5] T. Hashizume, E. Alekseev, D. P. Karim, S. Boutros and J. Redwing, “Capacitance–voltage characterization of AlN/GaN metal–insulator–semiconductor structures grown on sapphire substrate by metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 88, pp. 1983-1986, 2000.
    [6] J. Tan, M. K. Das, J. A. Cooper, Jr. and M. R. Mellocha, “Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC,” Appl. Phys. Lett., vol. 70, pp. 2280-2281, 1997.
    [7] L. H. Huang, S. H. Yeh, C. T. Lee, H. Tang, J. Bardwell, and J. B. Webb, “AlGaN/GaN metal-oxide-semiconductor high-Electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method,” IEEE Electron Device Lett., vol. 29, pp. 284-286, 2008.
    [8] L. H. Huang, S. H. Yeh, and C. T. Lee, “AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method,” Appl. Phys. Lett., vol. 93, pp. (043511-1)-(043511-3), 2008.
    [9] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, pp. 479-531, 1981.
    [10] F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron Devices, vol. 41, pp. 1926-1935, 1994.
    [11] J. M. Peransin, P. Vignaud, D. Rigaud, and L. K. J. Vandamme, “1/f noise in MODFETs at low drain bias,” IEEE Trans. Electron Devices, vol. 37, pp. 2250-2253, 1990.
    [12] A. Balandin, S. Cai, R. Li, K. L. Wang, V. R. Rao, and C. R. Viswanathan, “Flicker noise in GaN/Al0.15Ga0.85N doped channel heterostructure field effect transistors,” IEEE Electron Device Lett., vol. 19, pp. 475-477, 1998.
    [13] A. Balandin, S. V. Morozov, S. Cai, R. Li, K. L. Wang, G. Wijeratne, and C. R. Viswanathan, “Low flicker-noise GaN/AlGaN heterostructure field-effect transistors for microwave communications,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 1413-1417, 1999.
    [14] S. L. Rumyantsev, N. Pala, M. S. Shur, M. E. Levinshtein, M. AsifKhan, G. Simin, and J. Yang, “Low frequency noise in GaN/AlGaN heterostructure field effect transistors in non-ohmic region,” J. Appl. Phys., vol. 93, pp. 10030-10034, 2003.
    [15] C. H. Liu, K. T. Lam, S. J. Cheng, C. K. Wang, and Y. S. Sun, “Flicker noise of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor with a Photo-CVD SiO2 layer,” J. Electrochem. Soc., vol. 154, pp. H119-H123, 2007.

    下載圖示 校內:2010-02-02公開
    校外:2010-02-02公開
    QR CODE