簡易檢索 / 詳目顯示

研究生: 李凱璿
Lee, Kai-Hsuan
論文名稱: 缺陷抑制與表面披覆效應提升氮化鎵系列異質接面高電子移動率電晶體與感光元件性能之研究
Dislocation Reduction and Surface Passivation on the Performance Improvement of GaN Based Heterostructure High Electron Mobility Transistors and Photodetectors
指導教授: 張守進
Chang, Shoou-Jinn
張品全
Chang, Ping-Chuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 271
中文關鍵詞: 氮化鎵差排缺陷表面披覆電晶體感光元件
外文關鍵詞: GaN, Dislocation, Surface Passivation, Transistor, Photodetectors
相關次數: 點閱:74下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三五族氮化物半導體材料擁有直接可調式寬能隙與特殊的極化性質,使之具有應用於先進固態電子與光電技術的獨特潛力。近幾年來,使用藍寶石基板成長氮化鎵系列材料於半導體元件上之應用已取得重大進展。然而,藍寶石基板與氮化鎵薄膜間存在的晶格不匹配與熱膨脹係數之差異,導致產生過大的差排缺陷密度(約1E9-1E11 cm-2),嚴重限制了氮化鎵系列元件的發展。差排缺陷於元件性能及可靠度方面,均會造成不良的影響。

    本研究中,我們以有機金屬化學氣相磊晶法成長氮化鎵系列電子與光電元件,並分析及探討缺陷抑制與表面披覆效應對於異質接面高電子移動率電晶體與紫外光感光元件造成之作用。首先,我們討論以多重氮化鎂/氮化鎵緩衝層或以低溫氮化鋁鎵置入高溫氮化鎵磊晶層之間,其對於降低元件內部差排缺陷密度之效能。使用這種結構設計能大幅降低差排缺陷密度至1E8 cm-2,使得晶體品質獲得有效改善,連帶地提升元件之性能。此外,採用光激發氣相沉積法成長低介電常數之二氧化矽薄膜或使用電子束蒸鍍之方式成長高介電常數之五氧化二鉭薄膜同時作為金氧半高電子移動率電晶體之閘極絕緣層與披覆層,亦被提出與探討。

    隨後,我們討論同次成長覆蓋層結構(包括未活化鎂摻雜氮化鎵與未摻雜氮化鋁覆蓋層)對於元件性能提升的影響。這種結構已被證實可提供有效的表面披覆作用於氮化鎵材料。於成長氮化銦鎵材料時,使用三乙基鎵取代三甲基鎵作為烷基源可使其表面平坦並降低碳雜質之污染,卻會遭受氮空缺之影響。再者,使用同次成長覆蓋層結構且以三乙基鎵成長之氮化銦鎵感光元件亦能表現比傳統元件更佳之性能,利如較低的漏電流,較高的檢測效率與消除與陷阱捕捉有關之光電導增益現象。於-5 V 偏壓下,具有未活化鎂摻雜氮化鎵與未摻雜氮化鋁覆蓋層之氮化銦鎵感光元件,其拒斥比分別為7.11E3與1.38E3。而於相同偏壓下,其檢測效率分別為1.00E13與2.56E11 cmHz0.5W-1。

    其次,我們首次嘗試以傳統用於發光元件之氮化銦鎵/氮化鎵多重量子井結構應用於氮化鋁鎵/氮化鎵電子移動率電晶體及感光元件上。此舉可結合光元件與電元件,進而實現光電積體電路化的目標。使用多重量子井結構於感光元件可增加偵測波長調變的彈性且可提高光響應;而使用多重量子井結構於多通道電晶體元件可增強主通道之載子侷限能力,進而提升主通道之轉導值;並由於副通道的有效導通,而能提供一較寬的閘極工作電壓擺幅與較高的電流驅動能力。

    最後,我們提出以氮化銦鋁取代傳統氮化鋁鎵能障層,製作與氮化鎵晶格常數匹配之異質接面電晶體。此舉可於低應力情況下仍然維持高極化引致電荷,因而降低應力與缺陷造成的元件退化與可靠度問題。此外,我們也探討了使用電漿輔助化學氣相沉積方式異次成長或直接以有機金屬化學氣相磊晶方式同次成長之氮化矽對於元件表面披覆能力之優劣。研究指出使用同次成長之氮化矽能有效提升汲極電流,而使用異次成長之氮化矽則具較佳之高頻操作電流坍塌現象抵抗能力。因此,我們結合兩者之優點,提出氮化矽雙重披覆結構應用於氮化銦鋁/氮化鋁/氮化鎵高電子移動率電晶體。此元件於1 μm 的閘極線寬下,最大汲極電流與最大轉導分別為1188 mA/mm 與414 mS/mm,而電流增益截止頻率及最高振盪頻率分別為29.4 與 35.3 GHz,顯示其對於低雜訊、高溫度、高頻率與高功率操作,皆具有極大之應用價值與潛力。

    III-nitride semiconductors, with wide direct tunable band gap and unique polarization property, demonstrate outstanding potential to significantly advance solid-state electronic and optoelectronic technologies. In recent years, various devices have been developed using GaN-based materials grown on sapphire substrates. However, the large mismatches in lattice constant and thermal expansion coefficient limit the development of these devices by generating a significant amount of threading dislocations in a density of 1E9-1E11 cm-2. Dislocations have a deleterious effect on device performance and reliability of parasitic issue.

    In this work, GaN-based electronic and optoelectronic devices were grown by metal-organic vapor phase epitaxy(MOVPE). The impact of the dislocation reduction and surface passivation on the performance of heterostructure high electron mobility transistors (HEMTs) and ultraviolet photodetectors (PDs) have been characterized and investigated. Initially, unique techniques to grow multi-MgxNy/GaN buffer or insert a low-temperature Al-containing intermediate layer between high-temperature GaN, as dislocation-reduction structure design in applications to electronic and optoelectronic devices, have been developed. By our methods, the dislocation density in GaN epitaxial layer can be dramatically reduced to the order of 1E8 cm-2 and the device performance can be consequently improved owing to the ameliorative crystalline quality. Additionally, low-dielectric-constant SiO2 film grown by photo-chemical vapor deposition or high-dielectric-constant Ta2O5 film grown by electron beam deposition have been attempted simultaneously as gate insulator and passivation layer for metal-oxide-semiconductor (MOS-)HEMT.

    Subsequently, the in-situ grown cap layer, such as un-activated Mg-doped GaN and un-doped AlN, was applied to the fabrication of GaN-based optoelectronics. This unique approach has been proved to provide an effective surface passivation to GaN material. In terms of InGaN material, using triethylgallium (TEGa) instead of trimethylgallium(TMGa) alkyl sources can achieve smoother surface morphology and reduce carbon contamination, but being affected by nitrogen vacancies. Furthermore, TEGa-grown InGaN-based PDs with in-situ passivation have shown that outperformed the regular ones in device characteristics, such as lower dark current, higher detectivity and alleviated photoconductive gain associated with trapping effect. Under a -5 V bias, it was found that the UV to visible rejection ratio was 7.11E3 and 1.38E3 for InGaN-based PDs with un-activated Mg-doped GaN and un-doped AlN layer, respectively. Under the same bias, it was also found that the normalized detectivity (D*) was correspondingly determined as 1.00E13 and 2.56E11 cmHz0.5W-1, respectively.

    Next, InGaN/GaN multiple quantum well (MQW) structure has been used in AlGaN/GaN HEMTs and PDs for the first time. The new idea to develop such devices to a reasonable level of optoelectronic integrated circuit application is to be in connection with fundamental light-emitting MQW structure. The use of MQW in the active region of PD offers a flexibility to tune the detection edge and the possibility of increasing photo-response. On the other hand, it results in a very sharp rise of the conduction band after inserting MQW between two AlGaN/GaN hetero-junctions, which is able to obtain a larger main peak transconductance due to better carrier confinement and provides an efficient access to the satellite peak transconductance. It exhibits broader gate voltage swing and higher current-carrying capability as a result of incorporating MQW into multi-channel transistor.

    Finally, GaN-based transistors on lattice-matched heterostructure have been accomplished. A promising new approach to improve the performance is to replace the AlGaN with InAlN as barrier layer. It can provide superior polarization-induced charges together with lower strain in InAlN/GaN HEMT, specifically for InAlN lattice matched to GaN, which is achieved by spontaneous polarization only. Consequently, degradation and reliability problems that relate to strain induced defects and strain relaxation could be eliminated. In addition, the effectiveness of SiN surface passivation, with ex-situ grown by plasma-enhanced chemical-vapor deposition or in-situ grown by MOVPE on such devices, has been investigated as well. It was found that the formation of in-situ SiN enhanced the drain current in larger extent while it reveals a better immunity against current collapse by using ex-situ SiN passivation. Therefore, InAlN/AlN/GaN HEMT by dual SiN passivation was introduced to take advantage of combining ex-situ and in-situ SiN passivation and the characteristics of a maximum drain current of 1188 mA/mm and a peak transconductance of 414 mS/mm with a 1 μm gate length were obtained. The current-gain cut-off frequency (fT) and maximum frequency of oscillation (fmax) was 29.4 and 35.3 GHz, respectively. It demonstrates a great potential of our devices to low-noise, high-temperature, high-frequency, and high-power applications.

    Abstract (In English) ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ i Abstract (In Chinese) ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ v Acknowledgement ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ viii Contents ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ix Table Captions ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ xiii Figure Captions ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ xv CHAPTER 1 Introduction 1.1 Why III-nitrides? ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2 1.2 Statement of the problem ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 3 1.3 Metalorganic vapor phase epitaxy (MOVPE) ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 1.3.1 General conception ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 1.3.2 The main reactions for GaN growth ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 1.4 Organization for this work ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 CHAPTER 2 GaN-based HEMT and photodetector with multiple MgxNy/GaN buffer 2.1 GaN Schottky barrier photodetector with multiple MgxNy/GaN buffer ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 14 2.1.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 14 2.1.2 Structure design and crystal growth ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 15 2.1.3 Process flow and device fabrication ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 22 2.1.4 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 23 2.1.5 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 31 2.2 AlGaN/GaN HEMT with multiple MgxNy/GaN buffer ⋅⋅⋅⋅⋅⋅⋅⋅ 32 2.2.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 32 2.2.2 Structure design and crystal growth ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 37 2.2.3 Process flow and device fabrication ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 38 2.2.4 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 38 2.2.5 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 44 2.3 High- or low-dielectric-constant gate dielectrics and their applications to AlGaN/GaN MOS-HEMTs ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 44 2.3.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 44 2.3.2 Process flow and device fabrication ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 48 2.3.3 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 49 2.3.4 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 59 CHAPTER 3 InGaN-based photodetector with in-situ cap layer 3.1 InGaN photodetector with triethylgallium source and in-situ cap layer ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 104 3.1.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 104 3.1.2 Structure design and crystal growth ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 105 3.1.3 Process flow and device fabrication ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 111 3.1.4 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 112 3.1.5 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 119 CHAPTER 4 GaN-based HEMT and photodetector with Al-containing intermediate layer 4.1 AlGaN/GaN HEMT with Al-containing intermediate layer ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 136 4.1.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 136 4.1.2 Structure design and crystal growth ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 137 4.1.3 Process flow and device fabrication ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 140 4.1.4 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 141 4.1.5 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 144 4.2 AlGaN/GaN-HEMT-based integrable photodetector with Al-containing intermediate layer⋅⋅⋅⋅⋅ 145 4.2.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 145 4.2.2 Process flow and device fabrication ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 146 4.2.3 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 146 4.2.4 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 150 CHAPTER 5 GaN-based HEMT and photodetectors based on MQW structure 5.1 AlGaN/GaN HEMT based on InGaN/GaN MQW structure ⋅⋅⋅⋅ 167 5.1.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 167 5.1.2 Structure design and crystal growth ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 167 5.1.3 Process flow and device fabrication ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 169 5.1.4 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 169 5.1.5 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 170 5.2 AlGaN/GaN MOS-HEMT based on InGaN/GaN MQW structure ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 171 5.2.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 171 5.2.2 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 172 5.2.3 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 177 5.3 Integrable MSM photodetectors based on InGaN/GaN MQW with in-situ cap layer ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 178 5.3.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 178 5.3.2 Structure design and crystal growth ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 178 5.3.3 Process flow and device fabrication ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 179 5.3.4 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 180 5.3.5 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 182 CHAPTER 6 GaN-based HEMT based on lattice-matched heterostructure 6.1 InAlN/AlN/GaN HEMT with ex-situ or in-situ SiN passivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 200 6.1.1 Introduction and motivation ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 200 6.1.2 Structure design and crystal growth ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 202 6.1.3 Process flow and device fabrication ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 206 6.1.4 Characterization and discussion ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 208 6.1.5 Summary ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 214 CHAPTER 7 GaN-based HEMT and photodetectors based on MQW structure 7.1 Conclusions ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 237 7.2 Future Work ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 240 References ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 243 Publication List ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 266 Vita (In English) ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 270 Vita (In Chinese) ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 271

    Chapter 1

    [1] C. A. Tran, A. Osinski, R. F. Karlicek and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 75, No. 11, pp. 1494-1496, 1999.
    [2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN/GaN multiquantum well blue and green light emitting diodes,” IEEE J. Sel. Topics Quantum Electron., Vol. 8, No. 2, pp. 278-283, 2002.
    [3] K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett., Vol. 84, No. 17, pp. 3307-3309, 2004.
    [4] W. Lu, J. Yang, M. A. Khan and I. Adesida, “AlGaN/GaN HEMTs on SiC with over 100 GHz fT and low microwave noise,” IEEE Trans. Electron Devices, Vol. 48, No. 3, pp. 581-585, 2001.
    [5] N. V. Drozdovski and R. H. Caverly, “GaN-based high electron-mobility transistors for microwave and RF control applications,” IEEE Trans. Microw. Theory Tech., Vol. 50, No. 1, pp. 4-8, 2002.
    [6] T. Inoue, Y. Ando, H. Miyamoto, T. Nakayama, Y. Okamoto, K. Hataya and M. Kuzuhara, “30-GHz-band over 5-W power performance of short-channel AlGaN/GaN heterojunction FETs,” IEEE Trans. Electron Devices, Vol. 53, No. 1, pp. 74-80, 2005.
    [7] K. A. Abdullah, M. J. Abdullah, F. K. Yam and Z. Hassan, “Electrical characteristics of GaN-based metal-oxide-semiconductor (MOS) structures,” Microelectron. Eng., Vol. 81, No. 2-4, pp. 201-205, 2005.
    [8] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 85, No. 6, pp. 3222-3233, 1999.
    [9] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 87, No. 1, pp. 334-344, 2000.
    [10] R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, L. F. Eastman, O. Ambacher and M. Stutzmann, “Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire,” J. Appl. Phys., Vol. 87, No. 7, pp. 3375-3380, 2000.
    [11] R. Singh, R. J. Molnar, M. S. Ünlü and T. D. Moustakas, “Intensity dependence of photoluminescene in GaN thin films,” Appl. Phys. Lett., Vol. 64, No. 3, pp. 336-338, 1994.
    [12] L. Sugiura, “Dislocation motion in GaN light-emitting devices and its effect on device lifetime,” J. Appl. Phys., Vol. 81, No. 4, pp. 1633-1638, 1997.
    [13] N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng and T. D. Moustakas, “Scattering of electrons at threading dislocations in GaN,” J. Appl. Phys., Vol. 83, No. 7, pp. 3656-3659, 1998.
    [14] W. Shockley, “On the surface states associated with a periodic potential,” Phys. Rev., Vol. 56, No. 4, pp. 317-323, 1939.
    [15] M. Mesrine, N. Grandjean and J. Massies, “Efficiency of NH3 as nitrogen source for GaN molecular beam epitaxy,” Appl. Phys. Lett., Vol. 72, No. 3, pp. 350-352, 1998.
    [16] G. Briot, Group III Nitride Semiconductor Compounds, Series on Semiconductor Science and Technology, USA: Clarendon Press, Oxford, 1998.
    [17] C. -M. Chiang, S. M. Gates, A. Bensaoula and J. A. Schultz, “Hydrogen desorption and ammonia adsorption on polycrystalline GaN surfaces,” Chem. Phys. Lett., Vol. 246, No. 3, pp. 275-278, 1995.
    [18] A. Koukitu, T. Taki, N. Takahashi and H. Seki, “Thermodynamic study on the role of hydrogen during the MOVPE growth of group III nitrides,” J. Cryst. Growth, Vol. 197, No. 1-2, pp. 99-105, 1999.
    [19] M. Kočan, “AlGaN/GaN MBE 2DEG Heterostructures: Interplay between Surface-, Interface and Device-Properties,” Ph.D. dissertation, Dept. Elect. Eng., RWTH Aachen Univ., Aachen, Germany, 2003.
    [20] Y. Dikme, “MOVPE and Characterization of GaN-based Structures on Alternative Substrates,” Ph.D. dissertation, Dept. Elect. Eng., RWTH Aachen Univ., Aachen, Germany, 2006.

    Chapter 2

    [1] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high brightness InGaN/AlGaN double-heterostructure blue light-emitting diodes,” Appl. Phys. Lett., Vol. 64, No. 13, pp. 1687-1689, 1994.
    [2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw,“InGaN/GaN multiquantum well blue and green light emitting diodes,” IEEE J. Sel. Topics Quantum Electron., Vol. 8, No. 2, pp. 278-283, 2002.
    [3] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photon. Technol. Lett., Vol. 18, No. 10, pp. 1152-1154, 2006.
    [4] S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen and C. F. Shen, “GaN-based p-i-n sensors with ITO contacts,” IEEE Sensors J., Vol. 6, No. 2, pp. 406-411, 2006.
    [5] N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, “Solar-blind AlGaN based p-i-n photodiodes with low dark current and high detectivity,” IEEE Photon. Technol. Lett., Vol. 16, No. 7, pp. 1718-1720, 2004.
    [6] T. Mukai, K. Takekawa and S. Nakamura, “InGaN-based blue light emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., Vol. 37, No. 7B, pp. L839-L841, 1998.
    [7] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith, D. Batchelor and R. Davis, “Pendeoepitaxy of gallium nitride thin films,” Appl. Phys. Lett., Vol. 75, No. 2, pp. 196-198, 1999.
    [8] T. Kachi, K. Tomita, K. Itoh and H. Trando, “A new buffer layer for high quality GaN growth by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 72, No. 6, pp. 704-706, 1998.
    [9] K. Uchida, K. Nishida, M. Kondo and H. Munekata, “Epitaxial growth of GaN layers with double-buffer layers,” J. Cryst. Growth, Vol. 189-190, pp. 270-274, 1998.
    [10] S. Sakai, T. Wang, Y. Morishima and Y. Naoi, “A new method of reducing dislocation density in GaN layer grown on sapphire substrate by MOVPE,” J. Cryst. Growth, Vol. 221, No. 1-4, pp. 334-337, 2000.
    [11] C. H. Kuo, S. J. Chang, Y. K. Su, C. K. Wang, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. M. Tsai and C. C. Lin, “Nitride-based blue LEDs with GaN/SiN double buffer layers,” Solid-State Electron., Vol. 47, No. 11, pp. 2019-2022, 2003.
    [12] Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo and C. S. Chang, “InGaN-GaN MQW LEDs with Si treatment,” IEEE Photonics Technol. Lett., Vol. 17, No. 8, pp. 1620-1622, 2005.
    [13] D. D. Koleske, A. J. Fischer, A. A. Allerman, C. C. Mitchell, K. C. Cross, S. R. Kurtz, J. J. Figiel, K. W. Fullmer and W. G. Breiland, “Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence,” Appl. Phys. Lett., Vol. 81, No. 11, pp. 1940-1942, 2002.
    [14] P. Fini, X. Wu, E. J. Tarsa, Y. Golan, V. Srikant, S. Keller, S. P. Denbarrs and J. S. Speck, “The effect of growth environment on the morphological and extended defect evolution in GaN grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., Vol. 37, No. 8, pp. 4460-4466, 1998.
    [15] X. H. Wu, D. Kapolnek, E. J. Tarsa, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. Denbarrs and J. S. Speck, “Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN,” Appl. Phys. Lett., Vol. 68, No. 10, pp. 1371-1373, 1996.
    [16] B. Heying, X. Wu, S. Keller, Y. Li, D. Kapolnek, B. Keller, S. DenBaars and J. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., Vol. 68, No. 5, pp. 643-645, 1996.
    [17] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hasimoto and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett., Vol. 76, No. 23, pp. 3421-3423, 2000.
    [18] D. Cherns, W. T. Young, J. W. Steeds, F. A. Ponce and S. Nakamura, “Observation of coreless dislocations in α-GaN,” J. Cryst. Growth, Vol. 178, No. 1-2, pp. 201-206, 1997.
    [19] O. H. Nam, M. D. Bremser, T. S. Zheleva and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 71, No. 18, pp. 2638-2640, 1997.
    [20] C. Dunn and E. Koch, “Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe,”Acta metall., Vol. 5, No. 10, pp. 548-554, 1957.
    [21] M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, J. M. Baranowski, C. T. Foxon and T. S. Cheng, “Lattice parameters of gallium nitride,” Appl. Phys. Lett., Vol. 69, No. 1, pp. 73-75, 1996.
    [22] A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert and F. Karlicek, “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures,” Appl. Phys. Lett., Vol. 70, No. 21, pp. 2790-2792, 1997.
    [23] C. -D. Lien, F. C. T. So and M. -A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron Devices, Vol. 31, No. 10, pp. 1502-1503, 1984.
    [24] K. Sato and Y. Yasumura, “Study of forward I-V plot for Schottky diodes with high series resistence,” J. Appl. Phys., Vol. 58, No. 9, pp. 3655-3657, 1985.
    [25] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett., Vol. 49, No. 2, pp. 85-87, 1986.
    [26] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations,” Appl. Phys. Lett., Vol. 73, No. 7, pp. 975-977, 1998.
    [27] J. Spradlin, S. Dogan, J. Xie, R. Molnar, A. A. Baski and H. Morkoç, “Investigation of forward and reverse current conduction in GaN films by conductive atomic force microscopy,” Appl. Phys. Lett., Vol. 84, No. 21, pp. 4150-4152, 2004.
    [28] J. E. Northrup, “Screw dislocations in GaN: The Ga-filled core model,” Appl. Phys. Lett., Vol. 78, No. 16, pp. 2288-2290, 2001.
    [29] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying and J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Appl. Phys. Lett., Vol. 81, No. 1, pp. 79-81, 2002.
    [30] J. R. Yeargan and H. L. Taylor, “The Poole‐Frenkel effect with compensation present,” J. Appl. Phys., Vol. 39, No. 12, pp. 5600-5604, 1968.
    [31] A. S. Barker Jr. and M. Ilegems, “Infrared lattice vibrations and free-electron dispersion in GaN,” Phys. Rev. B, Vol. 7, No. 2, pp. 743-750, 1973.
    [32] S. Fischer, C. Wetzel, E. E. Haller and B. K. Meyer, “On p-type doping in GaN-acceptor binding energies,” Appl. Phys. Lett., Vol. 67, No. 9, pp. 1298-1300, 1995.
    [33] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., Vol. 79, No. 10, pp. 1417-1419, 2001.
    [34] J A Garrido, E Monroy, I Izpura and E Munoz, “Photoconductive gain modelling of GaN photodetectors”, Semicond. Sci. Technol., Vol. 13, No. 6, pp. 563-568, 1998.
    [35] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity,” Electron. Lett., Vol. 36, No. 18, pp. 1581-1583, 2000.
    [36] D. V. Kuksenkov, H. Temkin, A. Osinsky , R. Gaska and M. A. Khan, “Low-frequency noise and performance of GaN p-n junction photodetectors,” Electron Devices Meeting, Technical Digest., International, pp. 759-762, 1997.
    [37] S. R. Morrison, “l/f noise from levels in a linear or planar array. III. Trapped carrier fluctuations at dislocations,” J. Appl. Phys., Vol. 72, No. 9, pp. 4104-4112, 1992.
    [38] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 85, No. 6, pp. 3222-3233, 1999.
    [39] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 87, No. 1, pp. 334-344, 2000.
    [40] S. Keller, Y. F. Wu, G. Parish, N. Zhang, J. J. Xu, B. P. Keller, S. P. DenBaars and U. K. Mishra, “Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB,” IEEE Trans. Electron Devices, Vol. 48, No. 3, pp. 552-, 2001.
    [41] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao and S. S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors,” Appl. Phys. Lett., Vol. 71, No. 19, pp. 2794-2796, 1997.
    [42] C. Sanabria, A. Chakraborty, H. Xu, M. J. Rodwell, U. K. Mishra and R. A. York, “The effect of gate leakage on the noise figure of AlGaN/GaN HEMTs,” IEEE Electron Device Lett., Vol. 27, No. 1, pp. 19-21, 2006.
    [43] T. Nanjo, T. Oishi, M. Suita, Y. Abe and Y. Tokuda, “Effects of a thin Al layer insertion between AlGaN and Schottky gate on the AlGaN/GaN high electron mobility transistor characteristics,” Appl. Phys. Lett., Vol. 88, No. 4, pp. 043503, 2006.
    [44] S. Rajan, H. Xing, S. DenBaars, U. K. Mishra and D. Jena, “AlGaN/GaN polarization-doped field-effect transistor for microwave power applications,” Appl. Phys. Lett., Vol. 84, No. 9, pp. 1591-1593, 2004.
    [45] V. Narayanan, K. Lorenz, W. Kim and S. Mahajan, “Origins of threading dislocations in GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 78, No. 11, pp. 1544-1546, 2001.
    [46] C. J. Tun, C. H. Kuo, Y. K. Fu, C. W. Kuo, C. J. Pan and G. C. Chi, “Dislocation reduction in GaN with multiple MgxNy/GaN buffer layers by metal organic chemical vapor deposition,” Appl. Phys. Lett., Vol. 90, No. 21, pp. 212109, 2007.
    [47] K. H. Lee, S. J. Chang, P. C. Chang, Y. C. Wang and C. H. Kuo, “High quality GaN-based Schottky barrier diodes,” Appl. Phys. Lett., Vol. 93, No. 13, pp. 132110, 2008.
    [48] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair MgxNy-GaN buffer layer,” IEEE J. Quantum Electron., Vol. 44, No. 10, pp. 916-921, 2008.
    [49] H. Tang, W. Kim, A. Botchkarev, G. Popovici, F. Hamdani and H. Morkoç, “Analysis of carrier mobility and concentration in si-doped gan grown by reactive molecular beam epitaxy,” Solid-State Electron., Vol. 42, No. 5, pp. 839-847, 1998.
    [50] S. J. Chang, S. C. Wei, Y. K. Su, C. H. Liu, S. C. Chen, U. H. Liaw, T. Y. Tsai and T. H. Hsu, “AlGaN/GaN modulation-doped field-effect transistors with an Mg-doped carrier confinement layer,” Jpn. J. Appl. Phys., Vol. 42, No. 6A, pp. 3316-3319, 2003.
    [51] M. A. Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire and G. Neu, “GaN-AlGaN heterostructure field-effect transistors over bulk GaN substrates,” Appl. Phys. Lett., Vol. 76, No. 25, pp. 3807-3809, 2000.
    [52] Z. H. Feng, S. J. Cai, K. J. Chen and K. M. Lau, “Enhanced-performance of AlGaN-GaN HEMTs grown on grooved sapphire substrates,” IEEE Electron Device Lett., Vol. 26, No. 12, pp. 870-872, 2005.
    [53] P. G. Neudeck and C. Fazi, “Positive temperature coefficient of breakdown voltage in 4H-SiC p-i-n rectifiers,” IEEE Electron Device Lett., Vol. 18, No. 3, pp. 96-98, 1997.
    [54] R.W. Chuang, C.L. Yu, S.J. Chang, P.C. Chang, J.C. Lin and T.M. Kuan, “Crystal growth and characterization of AlGaN/GaN heterostructure prepared on vicinal-cut sapphire (0001) substrates,” J. Cryst. Growth, Vol. 308, No. 2, pp. 252-257, 2007.
    [55] E. Ayyildiz, Ç. N. Lu and A. Türüt, “The determination of the interface-state density distribution from the capacitance-frequency measurements in Au/n-Si Schottky barrier diodes,” J. Electron. Mater., Vol. 31, No. 2, pp. 119-123, 2002.
    [56] M. Sağlam and A. Türüt, “Aging effects on the interface state density obtained from current-voltage and capacitance-frequency characteristics of polypyrrole/p-Si/Al structure,” J. Appl. Polym. Sci., Vol. 101, No. 4, pp. 2313-2319, 2006.
    [57] E. H. Nicollian and A. Goetzberger, “The Si-SiO2 interface electrical properties as determined by the MIS conductance technique,” Bell Labs Tech. J., Vol. 46, No. 6, pp. 1055-1133, 1967.
    [58] K. A. Rickert, A. B. Ellis, F. J. Himpsel, J. Sun and T. F. Kuech, “n-GaN surface treatments for metal contacts studied via x-ray photoemission spectroscopy, ” Appl. Phys. Lett., Vol. 80, No. 2, pp. 204-206, 2002.
    [59] T. R. Prunty, J. A. Smart, E. M. Chumbes, B. K. Ridley, L. F. Eastman and J. R. Shealy, “Passivation of AlGaN/GaN heterostructures with silicon nitride for insulated gate transistors,” IEEE/Cornell Conference, pp. 208-214, 2000.
    [60] I. Daumiller, D. Theron, C. Gaquière, A. Vescan, R. Dietrich, A. Wieszt, H. Leier, R. Vetury, U. K. Mishra, I. P. Smorchkova, S. Keller, N. X. Nguyen, C. Nguyen and E. Kohn, “Current instabilities in GaN-based devices,” IEEE Electron Device Lett., Vol. 22, No. 2, pp. 62-64, 2001.
    [61] R Vetury, N. Q. Zhang, S. Keller and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, Vol. 48, No. 3, pp. 560-566, 2001.
    [62] A. Tarakji, G. Simin, N. Ilinskaya, X. Hu, A. Kumar, A. Koudymov, J. Yang, M. Asif Khan, M. S. Shur and R. Gaska, “Mechanism of radio-frequency current collapse in GaN-AlGaN field-effect transistors,” Appl. Phys. Lett., Vol. 78, No. 15, pp. 2169-2171, 2001.
    [63] H. Hasegawa, T. Inagaki, S. Ootomo and T. Hashizume, “Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors,” J. Vac. Sci. Technol. B, Vol. 21, No. 4, pp. 1844-1855, 2003.
    [64] W. Lu, V. Kumar, R. Schwindt, E. Piner and I. Adesida, “A comparative study of surface passivation on AlGaN/GaN HEMTs,” Solid-State Electron., Vol. 46, No. 9, pp. 1441-1444, 2002.
    [65] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo and Y. Sano, “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride,” Appl. Phys. Lett., Vol. 84, No. 4, pp. 613-615, 2004.
    [66] X. Z. Dang, E. T. Yu, E. J. Piner and B. T. McDermott, “Influence of surface processing and passivation on carrier concentrations and transport properties in AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 90, No. 3, pp. 1357-1361, 2001.
    [67] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Lett., Vol. 21, No. 2, pp. 63-65, 2000.
    [68] G. Simin, A. Koudymov, H. Fatima, J. Zhang, J. Yang, M. A. Khan, X. Hu, A. Tarakji, R. Gaska and M. S. Shur, “SiO2/AlGaN/InGaN/GaN MOSDHFETs,” IEEE Electron Device Lett., Vol. 23, No. 8, pp. 458-460, 2002.
    [69] A. Tarakji, X. Hu, A. Koudymov, G. Simin, J. Yang, M. A. Khan, M. S. Shur and R. Gaska, “DC and microwave performance of a GaN/AlGaN MOSHFET under high temperature stress,” Solid-State Electron., Vol. 46, No. 8, pp. 1211-1214, 2002.
    [70] X. Hu, A. Koudymov, G. Simin, J. Yang, M. A. Khan, A. Tarakji, M. S. Shur and R. Gaska, “Si3N4/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors,” Appl. Phys. Lett., Vol. 79, No. 17, pp. 2832-2834, 2001.
    [71] C. S. Oh, C. J. Youn, G. M. Yang, K. Y. Lim and J. W. Yang, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor with oxidized Ni as a gate insulator,” Appl. Phys. Lett., Vol. 85, No. 18, pp. 4214-4216, 2004.
    [72] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., Vol. 86, No. 6, pp. 063501, 2005.
    [73] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., Vol. 73, No. 26, pp. 3893-3895, 1998.
    [74] B. P. Gila, M. Hlad, A. H. Onstine, R. Frazier, G. T. Thaler, A. Herrero, E. Lambers, C. R. Abernathy, S. J. Pearton, T. Anderson, S. Jang, F. Ren, N. Moser, R. C. Fitch and M. Freund, “Improved oxide passivation of AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., Vol. 87, No. 16, pp. 163503, 2005.
    [75] R. Mehandru, B. Luo, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, D. Gotthold, R. Birkhahn, B. Peres, R. Fitch, J. Gillespie, T. Jenkins, J. Sewell, D. Via and A. Crespo, “AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors using Sc2O3 as the gate oxide and surface passivation,” Appl. Phys. Lett., Vol. 82, No. 15, pp. 2530-2532, 2003.
    [76] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo and M. Umeno, “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator-semiconductor interfaces with low interface state density,” Appl. Phys. Lett., Vol. 73, No. 6, pp. 809-811, 1998.
    [77] M. Ochiai, M. Akita, Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, “AlGaN/GaN heterostructure metal-insulator-semiconductor high-electron-mobility transistors with Si3N4 gate insulator,” Jpn. J. Appl. Phys., Vol. 42, No. 4B, pp. 2278-2280, 2003.
    [78] J. Kuzmík, G. Konstantinidis, S. Harasek, S. Hascik, E. Bertagnolli, A. Georgakilas and D. Pogany, “ZrO2/(Al)GaN metal-oxide-semiconductor structures: characterization and application,” Semicond. Sci. Technol., Vol. 19, No. 12, pp. 1364-1368, 2004.
    [79] S. C. Wei, Y. K. Su, S. J. Chang, S. M. Chen and W. L. Li, “Nitride-based MQW LEDs with multiple GaN-SiN nucleation layers,” IEEE Trans. Electron Devices, Vol. 52, No. 6, pp. 1104-1109, 2005.
    [80] E. Atanassova and D. Spasov, “Thermal Ta2O5-alternative to SiO2 for storage capacitor application,” Microelectron. Reliab., Vol. 42, No. 8, pp. 1171-1177, 2002.
    [81] E. Atanassova, T. Dimitrova and J. Koprinarova, “AES and XPS study of thin RF-sputtered Ta2O5 layers,” Appl. Surf. Sci., Vol. 84, pp. 193-202, 1995.
    [82] F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B, Vol. 38, No. 9, pp. 6084-6096, 1988.
    [83] M. I. Alayoa, I. Pereyra, W. L. Scopel and M. C. A. Fantini, “On the nitrogen and oxygen incorporation in plasma-enhanced chemical vapor deposition (PECVD) SiOxNy films,” Thin Solid Films, Vol. 402, No. 1-2, pp. 154-161, 2002.
    [84] G. Pacchioni, L. Skuja and D. L. Griscom, Defects in SiO2 and related dielectrics: science and technology, Netherlands: Kluwer Academic Publishers, Inc., 2000.
    [85] Z. Yu, M. Aceves-Mijares, A. Luna-López, E. Quiroga and R. López-Estopier, Photoluminescence and single electron effect of nanosized silicon materials, Mexico: Nova Science Publishers, Inc., 2006.
    [86] R. J. Bairle, M. J. Caldas, E. Molinari and S. Ossicini, “Optical emission from small Si particles,” Solid State Commun., Vol. 102, No. 7, pp. 545-549, 1997.
    [87] M. Nakamura, Y. Mochizuki, K. Usami, Y. Itoh and T. Nozaki, “Infrared absorption spectra and compositions of evaporated silicon oxides (SiOx),” Solid State Commun., Vol. 50, No. 12, pp. 1079-1081, 1984.
    [88] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure,” Appl. Phys. Lett., Vol. 77, No. 23, pp. 3788-3790, 2000.
    [89] E. H. Nicollian and J. R. Brews, MOS Physics and Technology, New York, USA: Wiley, 1982.
    [90] J. Antoszewski, M. Gracey, J. M. Dell, L. Faraone, T. A. Fisher, G. Parish, Y.-F. Wu and U. K. Mishra, “Scattering mechanisms limiting two-dimensional electron gas mobility in Al0.25Ga0.75N/GaN modulation-doped field-effect transistors,” J. Appl. Phys., Vol. 87, No. 8, pp. 3900-3904, 2000.
    [91] S. Rai, V. Adivarahan, N. Tipirneni, A. Koudymou, J. Yang, G. Simin and M. A. Khan, “Low threshold-14W/mm ZrO2/AlGaN/GaN metal-oxide-semiconductor heterostructure field effect transistors,” Jpn. J. Appl. Phys., Vol. 45, No. 6A, pp. 4985-4987, 2006.
    [92] S. A. Vitusevich, S. V. Danylyuk, N. Klein, M. V. Petrychuk, A. Y. Avksentyev, V. N. Sokolov, V. A. Kochelap, A. E. Belyaev, V. Tilak, J. Smart, A. Vertiatchikh and L. F. Eastman, “Separation of hot-electron and self-heating effects in two-dimensional AlGaN/GaN-based conducting channels,” Appl. Phys. Lett., Vol. 82, No. 5, pp. 748-, 2003.
    [93] G. Verzellesi, R. Pierobon, F. Rampazzo, G. Meneghesso, A. Chini, U. K. Mishra, C. Canali and E. Zanoni, “Experimental/numerical investigation on current collapse in AlGaN-GaN HEMTs,” Electron Devices Meeting Tech. Dig., International, pp. 689-692, 2002.
    [94] A. F. M. Anwar, S. S. Islam and R. T. Webster, “Carrier trapping and current collapse mechanism in GaN metal-semiconductor field-effect transistors,” Appl. Phys. Lett., Vol. 84, No. 11, pp. 1970-1972, 2004.
    [95] S. S. Islam and A. F. M. Anwar, “Self-heating and trapping effects on the RF performance of GaN MESFETs,” IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, pp. 4056-4058, 2004.
    [96] M. Marso, G. Heidelberger, K. M. Indlekofer, J. Bernát, A. Fox, P. Kordoš and H. Lüth, “Origin of improved RF performance of AlGaN/GaN MOSHFETs compared to HFETs,” IEEE Trans. Electron Devices, Vol. 53, No. 7, pp. 1517-1523, 2006.
    [97] F. N. Hooge, T. G. M. Kleinpenning and L. K. J. Vandamme, “Experimental studies on l/f noise,” Rep. Prog.Phys., Vol. 44, no. 5, pp. 479-532, 1981.
    [98] J. M. Peransin, P. Vignaud, D. Rigaud and L. K. J. Vandamme, “l/f noise in MODFET’s at low drain bias,” IEEE Trans. Electron Devices, Vol. 37, No. 10, pp. 2250-2253, 1990.
    [99] F. N. Hooge, “l/f noise sources,” IEEE Trans. Electron Devices, Vol. 41, No. 11, pp. 1926-1935, 1994.
    [100] F. N. Hooge, “Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance,” IEEE Electron Device Lett., Vol. 24, No. 9, pp. 535-537, 2003.
    [101] T. Böttcher, “Heteroepitaxy of Group-III Nitrides for the Application in Laser Diodes,” Ph.D. dissertation, Dept. Phys., Bremen Univ., Bremen, Germany, 2002.

    Chapter 3

    [1] N. A. El-Masry, E. L. Piner, S. X. Liu and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 72, No. 1, pp. 40-42, 1998.
    [2] H. Selke, M. Amirsawadkouhi, P. L. Ryder, T. Böttcher, S. Einfeldt, D. Hommel, F. Bertram and J. Christen, “Compositional inhomogeneities in InGaN studied by transmission electron microscopy and spatially resolved cathodoluminescence,” Mater. Sci. Eng. B, Vol. 59, No. 1-3, pp. 279-282, 1999.
    [3] S. Pereira, M. R. Correia, E. Pereira, K. P. O'Donnell, C. Trager-Cowan, F. Sweeney and E. Alves, “Compositional pulling effects in InxGa1-xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B, Vol. 64, No. 20, pp. 205311, 2001.
    [4] A. Dussaigne, B. Damilano, N. Grandjean and J. Massies, “In surface segregation in InGaN/GaN quantum wells,” J. Cryst. Growth, Vol. 251, No. 1-4, pp. 471-475, 2003.
    [5] S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra and S. P. Den Baars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett., Vol. 68, No. 22, pp. 3147-3149, 1996.
    [6] S. A. Stockman, A. W. Hanson, C. M. Colomb, M. T. Fresina, J. E. Baker and G. E. Stillman, “A comparison of TMGa and TEGa for low-temperature metalorganic chemical vapor deposition growth of CCl4-doped in GaAs,” J. Electron. Mater., Vol. 23, No. 8, pp. 791-799, 1994.
    [7] N. Kobayashi and T. Makimoto, “Reduced carbon contamination in OMVPE grown GaAs and AlGaAs,” Jpn. J. Appl. Phys., Vol. 24, No. 10, pp. L824-L826, 1985.
    [8] A. Saxler, D. Walker, P. Kung, X. Zhang, M. Razeghi, J. Solomon, W. C. Mitchel and H. R. Vydyanath, “Comparison of trimethylgallium and triethylgallium for the growth of GaN,” Appl. Phys. Lett., Vol. 71, No. 22, pp. 3272-3274, 1997.
    [9] J. F. Chen, N. C. Chen, W. Y. Huang, W. I. Lee and M. S. Feng, “Analysis of influence of alkyl sources on deep levels in GaN by transient capacitance method,” Jpn. J. Appl. Phys., Vol. 35, No. 7A, pp. L810-L812, 1996.
    [10] C. Poblenz, T. Mates, M. Craven, S. P. DenBaars and J. S. Speck, “Impurity incorporation in InGaN grown by RF plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett., Vol. 81, No. 15, pp. 2767-2769, 2002.
    [11] T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, Hai Lu and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett., Vol. 89, No. 20, pp. 202110, 2006.
    [12] G. C. Yi and B. W. Wessels, “Deep level defects in n-type GaN compensated with Mg,” Appl. Phys. Lett., Vol. 68, No. 26, pp. 3769-3771, 1996.
    [13] K. Saarinen, J. Nissila, P. Hautojarvi, J. Likonen, T. Suski, I. Grzegory, B. Lucznik and S. Porowski, “The influence of Mg doping on the formation of Ga vacancies and negative ions in GaN bulk crystals,” Appl. Phys. Lett., Vol. 75, No. 16, pp. 2441-2443, 1999.
    [14] S. Nakamura and G. Fasol, The Blue Laser Diode, 1st ed. Berlin, Germany: Springer-Verlag, 1997.
    [15] T. Hashizume, E. Alekseev, D. Pavlidis, K. S. Boutros and J. Redwing, “Capacitance-voltage characterization of AlN/GaN metal-insulator-semiconductor structures grown on sapphire substrate by metalorganic chemical vapor deposition,” J. Appl. Phys., Vol. 88, No. 4, pp. 1983-1986, 2000.
    [16] S. C. Wei, Y. K. Su, S. J. Chang, S. M. Chen and W. L. Li, “Nitride-based MQW LEDs with multiple GaN-SiN nucleation layers,” IEEE Trans. Electron Devices, Vol. 52, No. 6, pp. 1104-1109, 2005.
    [17] J. W. Ju, E. S. Kang, H. S. Kim, L. W. Jang, H. K. Ahn, J. W. Jeon, I. H. Leea and J. H. Baek, “Metal-organic chemical vapor deposition growth of InGaN/GaN high power green light emitting diode: Effects of InGaN well protection and electron reservoir layer,” J. Appl. Phys., Vol. 102, No. 5, pp. 053519, 2007.
    [18] R. Armitage, W. Hong, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Hautakangas and K. Saarinen, “Contributions from gallium vacancies and carbon-related defects to the ‘yellow luminescence’ in GaN,” Appl. Phys. Lett., Vol. 82, No. 20, pp. 3457-3459, 2003.
    [19] S. Nakamura, N. Iwasa, M. Senoh and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., Vol. 31, No. 5A, pp. 1258-1266, 1992.
    [20] A. Ishibashi, H. Takeishi, M. Mannoh, Y. Yabuuchi and Y. Ban, “Residual impurities in GaN/Al2O3 grown by metalorganic vapor phase epitaxy,” J. Electron. Mater., Vol. 25, No. 5, pp. 799-803, 1996.
    [21] M. Marso, M. Horstmann, M. Hardtdegen, P. Kordos and H. Luth, “Electrical behavior of the InP/InGaAs based MSM 2DEG diode,” Solide-State Electron., Vol. 41, No. 1, pp. 25-31, 1997.
    [22] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., New Jersey, USA: Prentice Hall, 1997.
    [23] J. Bardeen, “Surface states and rectification at a metal-semiconductor contact,” Phys. Rev. B, Vol. 71, No. 10, pp. 717-727, 1947.
    [24] J. C. Carrano, T. Li, D. L. Brown, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” Appl. Phys. Lett., Vol. 83, No. 11, pp. 6148-6160, 1998.
    [25] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., Vol. 79, No. 10, pp. 1417-1419, 2001.
    [26] P. C. Chang, C. L. Yu, S. J. Chang, Y. C. Lin, C. H. Liu and S. L. Wu, “Low-noise and high-detectivity GaN-based UV photodiode with a semi-insulating Mg-doped GaN cap layer,” IEEE Sens. J., Vol. 7, No. 9, pp. 1270-1273, 2007.
    [27] P. C. Chang, C. L. Yu, S. J. Chang, K. H. Lee, C. H. Liu and S. L. Wu, “High-detectivity nitride-based MSM photodetectors on InGaN-GaN multiquantum well with the unactivated Mg-doped GaN layer,” IEEE J. Quantum Electron., Vol. 43, No. 11, pp. 1060-1064, 2007.
    [28] K. H. Lee, P. C. Chang, S. J. Chang, C. L. Yu, Y. C. Wang and S. L. Wu, “GaN MSM photodetectors with an unactivated Mg-doped GaN cap layer and sputtered ITO electrodes,” J. Electrochem. Soc., Vol. 155, No. 6, pp. J165-J167, 2008.
    [29] Z. A. Weinberg, “On tunneling in metal-oxide-silicon structures,” J. Appl. Phys., Vol. 53, No. 7, pp. 5052-5056, 1982.
    [30] S. Karmalkar, D. M. Sathaiya and M. S. Shur, “Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., Vol. 82, No. 22, pp. 3976-3978, 2003.
    [31] M. P. Houng, Y. H. Wang and W. J. Chang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” J. Appl. Phys., Vol. 86, No. 3, pp. 1488-1491, 1999.
    [32] A. M. Witowski, K. Pakuła, J. M. Baranowski, M. L. Sadowski and P. Wyder, “Electron effective mass in hexagonal GaN,” Appl. Phys. Lett., Vol. 75, No. 26, pp. 4154-4155, 1999.
    [33] S. P. Fu and Y. F. Chen, “Effective mass of InN epilayers,” Appl. Phys. Lett., Vol. 85, No. 9, pp. 1523-1525, 2004.
    [34] E. J. Miller, E. T. Yu, P. Waltereit and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett., Vol. 84, No. 4, pp. 535-537, 2004.
    [35] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., USA: Prentice Hall, New Jersey, 1997.

    Chapter 4

    [1] J. S. Speck and S. J. Rosner, “The role of threading dislocations in the physical properties of GaN and its alloys,” Physica B., Vol. 273-274, pp. 24-32, 1999.
    [2] Y. L. Tsai and J. R. Gong, “Influence of low-temperature AlGaN intermediate multilayer structures on the growth mode and properties of GaN,” Opt. Mater., Vol. 27, No. 3, pp. 425-428, 2004.
    [3] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano and I. Akasaki, “Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN”, Jpn. J. Appl. Phys., Vol. 37, pp. L 316-L 318, 1998.
    [4] J. R. Gong, S. F. Tseng, C. W. Huang, Y. L. Tsai, W. T. Liao, C. L. Wang, B. H. Shi and T. Y. Lin, “Effects of Al-containing intermediate III-nitride strained multilayers on the threading dislocation density and optical properties of GaN films,” Jpn. J. Appl. Phys., Vol. 42, No. 11, pp. 6823-6826, 2003.
    [5] P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys., Vol. 38, No. 1-2, pp. 1572-9613, 1985.
    [6] I. M. Abdel-Motaleba and R. Y. Korotkov, “Modeling of electron mobility in GaN materials,” J. Appl. Phys., Vol. 97, No. 9, pp. 093715, 2005.
    [7] H. Tang, W. Kim, A. Botchkarev, G. Popovici, F. Hamdani and H. Morkoç, “Analysis of carrier mobility and concentration in Si-doped GaN grown by reactive molecular beam epitaxy,” Solid-State Electron., Vol. 42, No. 5, pp. 839-847, 1998.
    [8] A. V. Vertiatchikh and L. F. Eastman, “Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance,” IEEE Electron Device Lett., Vol. 24, No. 9, pp. 535-537, 2003.
    [9] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai and G. C. Chi, “Reduction of dark current in AlGaN/GaN Schottky-barrier photodetectors with a low-temperature-grown GaN cap layer,” IEEE Electron Device Lett., Vol. 25, No. 9, pp. 593-595, 2004.
    [10] Y. C. Kong, R. M. Chu, Y. D. Zheng, C. H. Zhou, B. Shen, S. L. Gu, R. Zhang, P. Han, Y. Shi and R. L. Jiang, “High responsivity of GaN p-i-n photodiode by using low-temperature interlayer,” Appl. Phys. Lett., Vol. 91, No. 17, pp. 173502, 2007.
    [11] P. C. Chang, C. H. Chen, S. J. Chang, Y. K. Su, C. L. Yu, P. C. Chen and C. H. Wang, “AlGaN/GaN MSM photodetectors with photo-CVD annealed Ni/Au semi-transparent contacts,” Semicond. Sci. Technol., Vol. 19, No. 12, pp. 1354-1357, 2004.
    [12] H. Jiang, T. Egawa, H. Ishikawa, C. Shao and T. Jimbo, “Visible-blind metal-semiconductor-metal photodetectors based on undoped AlGaN/GaN high electron mobility transistor structure,” Jpn. J. Appl. Phys., Vol. 43, No. 5B, pp. L 683-L 685, 2004.
    [13] L. K. Li, B. Turk, W. I.Wang, S. Syed, D. Simonian and H. L. Stormer, “High electron mobility AlGaN/GaN heterostructures grown on sapphire substrates by molecular-beam epitaxy,” Appl. Phys. Lett., Vol. 76, No. 6, pp. 742-744, 2000.
    [14] R. -H. Yuang, Y. -J. Chien, J. -L. Shieh and J. -I. Chyi, “High-speed GaAs metal-semiconductor-metal photodetectors with recessed metal electrodes,” Appl. Phys. Lett., Vol. 69, No. 2, pp. 245-247, 1996.
    [15] N. Hayashi, S. Kamiyama, T. Takeuchi, M. Iwaya, H. Amano, I. Akasaki, S. Watanabe, Y. Kaneko and N. Yamada, “Electrical conductivity of low-temperature-deposited Al0.1Ga0.9N interlayer,” Jpn. J. Appl. Phys., Vol. 39, No. 12A, pp. 6493-6495, 2000.
    [16] K. A. Rickert, A. B. Ellis, F. J. Himpsel, J. Sun and T. F. Kuech, “N-GaN surface treatments for metal contacts studied via x-ray photoemission spectroscopy,” Appl. Phys. Lett., Vol. 80, No. 2, pp. 204-206, 2002.
    [17] S. F. Soares, “Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., Vol. 31, No. 2A, pp. 210-216, 1992.
    [18] E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” IEEE J. Sel. Top. Quantum Electron., Vol. 71, No. 7, pp. 870-872, 1997.
    [19] J. A. Garrido, E. Monroy, I. Izpura and E Muñoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol., Vol. 13, No. 6, pp. 563-568, 1998.
    [20] J. W. Eberhard and P. M. Horn, “Temperature dependence of 1/f noise in silver and copper,” Phys. Rev. Lett., Vol. 39, No. 10, pp. 643-646, 1977.
    [21] K. S. Ralls and R. A. Buhrman, “Microscopic study of 1/f noise in metal nanobridges,” Phys. Rev. B, Vol. 44, No. 11, pp. 5800-5817, 1991.
    [22] N. V. D’yakonova, M. E. Levinshteîn, S. Contreras, W. Knap, B. Beaumont and P. Gibart, “Low-frequency noise in n-GaN,” Semiconductors, Vol. 32, No. 3, pp. 257-260, 1998.
    [23] M. Skowronski, J. Lagowski, M. Milshtein, C. H. Kang, F. P. Dabkowski, A. Hennel and H. C. Gatos, “Effect of plastic deformation on electronic properties of GaAs,” J. Appl. Phys., Vol. 62, No. 10, pp. 3791-3798, 1987.
    [24] B. Pellegrini, “1/fγ noise from single-energy-level defects,” Phys. Rev. B, Vol. 35, No. 2, pp. 571-580, 1987.

    Chapter 5

    [1] A. El-Fatimy, N. Dyakonova, Y. Meziani, T. Otsuji, W. Knap, S. Vandenbrouk, K. Madjour, D. Théron, C. Gaquiere, M. A. Poisson, S. Delage, P. Prystawko and C. Skierbiszewski, “AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources,” J. Appl. Phys., Vol. 107, No. 2, pp. 024504, 2010.
    [2] T. Mizutani, M. Ito, S. Kishimoto and F. Nakamura, “AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation,” IEEE Electron Device Lett., Vol. 28, No. 7, pp. 549-551, 2007.
    [3] T. M. Kuan, S. J. Chang, Y. K. Su, J. C. Lin, S. C. Wei, C. K. Wang, C. I. Huang, W. H. Lan, J. A. Bardwell, H. Tang, W. J. Lin and Y. T. Cherng, “High-performance GaN/InGaN heterostructure FETs on Mg-doped GaN current blocking layers,” J. Cryst. Growth, Vol. 272, No. 1-4, pp. 300-304, 2004.
    [4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “InGaN multi-quantum-well structure laser diodes grown on MgAl2O4 substrates,” Appl. Phys. Lett., Vol. 68, No. 15, pp. 2105-2107, 1996.
    [5] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kiyoku, “Ridge-geometry InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett., Vol. 69, No. 10, pp. 1477-1479, 1996.
    [6] P. C. Chang and C. L. Yu, “InGaN/GaN multi-quantum-well ultraviolet photosensors by capping an unactivated Mg-doped GaN layer,” Appl. Phys. Lett., Vol. 91, No. 14, pp. 141113, 2007.
    [7] C. L. Yu, R. W. Chuang, S. J. Chang, P. C. Chang, K. H. Lee and J. C. Lin, “InGaN-GaN MQW metal-semiconductor-metal photodiodes with semi-insulating Mg-doped GaN cap layers,” IEEE Photonics Technol. Lett., Vol. 19, No. 11, pp. 846-848, 2007.
    [8] P. C. Chang, C. L. Yu, S. J. Chang, K. H. Lee, C. H. Liu and S. L. Wu, “High-detectivity nitride-based MSM photodetectors on InGaN-GaN multiquantum well with the unactivated Mg-doped GaN layer,” IEEE J. Quantum Electron., Vol. 43, No. 11, pp. 1060-1064, 2007.
    [9] H. Daembkes and G. Weimann, “Multiple quantum well AlGaAs/GaAs field‐effect transistor structures for power applications,” Appl. Phys. Lett., Vol. 52, No. 17, pp. 1404-1406, 1988.
    [10] Z. Y. Fan, J. Li, M. L. Nakarmi, J. Y. Lin and H. X. Jiang, “AlGaN/GaN/AlN quantum-well field-effect transistors with highly resistive AlN epilayers,” Appl. Phys. Lett., Vol. 88, No. 7, pp. 073513, 2006.
    [11] T. Inoue, Y. Ando, H. Miyamoto, T. Nakayama, Y. Okamoto, K. Hataya and M. Kuzuhara, “30-GHz-band over 5-W power performance of short-channel AlGaN/GaN heterojunction FETs,” IEEE Trans. Electron Devices, Vol. 53, No. 1, pp. 74-80, 2005.
    [12] W. Lu, J. Yang, M. A. Khan and I. Adesida, “AlGaN/GaN HEMTs on SiC with over 100 GHz fT and low microwave noise,” IEEE Trans. Electron Devices, Vol. 48, No. 3, pp. 581-585, 2001.
    [13] C. A. Tran, A. Osinski, R. F. Karlicek and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 75, No. 11, pp. 1494-1496, 1999.
    [14] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett., Vol. 69, No. 26, pp. 4056-4058, 1996.
    [15] J. Liu, Y. Zhou, J. Zhu, K. M. Lau and K. J. Chen, “AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement,” IEEE Electron Device Lett., Vol. 27, No. 1, pp. 10-12, 2006.
    [16] R. Vetury, N. Q. Zhang, S. Keller and U. K. Mishra, “The impact of surface states on the DC and RF Characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, Vol. 48, No. 3, pp. 560-566, 2001.
    [17] J. Antoszewski, M. Gracey, J. M. Dell, L. Faraone, T. A. Fisher, G. Parish, Y. -F. Wu and U. K. Mishra, “Scattering mechanisms limiting two-dimensional electron gas mobility in Al0.25Ga0.75N/GaN modulation-doped field-effect transistors,” J. Appl. Phys., Vol. 87, No. 8, pp. 3900-3904, 2000.
    [18] M. Ochiai, M. Akita, Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, “AlGaN/GaN heterostructure metal-insulator-semiconductor high-electron-mobility transistors with Si3N4 gate insulator,” Jpn. J. Appl. Phys., Vol. 42, No. 4B, pp. 2278-2280, 2003.
    [19] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., Vol. 86, No. 6, pp. 063501, 2005.
    [20] F. N. Hooge, “l/f noise sources,”IEEE Trans. Electron Devices, Vol. 41, No. 11, pp. 1926-1935, 1994.
    [21] R. Chu, Y. Zhou, J. Liu, D. Wang, K. J. Chen and K. M. Lau, “AlGaN-GaN Double-Channel HEMTs,” IEEE Trans. Electron Devices, Vol. 52, No. 4, pp. 438-446, 2005.
    [22] J. Burm, W. J. Schaff, G. H. Martin, L. F. Eastman, H. Amano and I. Akasaki, “Recessed gate GaN MODFETs,” Solid-State Electron., Vol. 41, No. 2, pp. 247-250, 1997.
    [23] C. Rivera, J. L. Pau, F. B. Naranjo and E. Munoz, “Novel photodetectors based on InGaN/GaN multiple quantum wells,” Phys. Status Solidi A-Appl. Mat., Vol. 201, No. 12, pp. 2658-2662, 2004.
    [24] C. Rivera, J. L. Pau, A. Navarro and E. Munoz, “Photoresponse of (In,Ga)N-GaN multiple-quantum-well structures in the visible and UVA ranges,” IEEE J. Quantum Electron., Vol. 42, No. 1, pp. 51-58, 2006.
    [25] J. P. R. David, Y. H. Chen, R. Grey, G. Hill, P. N. Robson and P. Kightley, “Effect of misfit dislocations on leakage currents in strained multiquantum well structures,” Appl. Phys. Lett., Vol. 67, No. 7, pp. 906-908, 1995.
    [26] P. C. Chang, C. H. Chen, S. J. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, C. H. Liu, H. Hung and S. M. Wang, “InGaN/GaN multi-quantum well metal-insulator semiconductor photodectors with photo-CVD SiO2 layers,” Jpn. J. Appl. Phys., Vol. 43, No. 4B, pp. 2008-2010, 2004.
    [27] P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. DenBaars and J. S. Speck, “Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor desposition,” Appl. Phys. Lett., Vol. 72, No. 18, pp. 2247-2249, 1998.
    [28] E. G. Brazel, M. A. Chin and V. Narayanamurti, “Direct observation of localized high current densities in GaN films,” Appl. Phys. Lett., Vol. 74, No. 16, pp. 2367-2369, 1999.
    [29] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer and R. J. Molnar, “Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes,” Appl. Phys. Lett., Vol. 78, No. 12, pp. 1685-1687, 2001.
    [30] J. K. Sheu, M. L. Lee and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes,” Appl. Phys. Lett., Vol. 86, No. 5, p. 052103, 2005.

    Chapter 6

    [1] A. Koudymov, X. Hu, K. Simin, G. Simin, M. Ali, J. Yang and M. A. Khan, “Low-loss high power RF switching using multifinger AlGaN/GaN MOSHFETs,” Appl. Phys. Lett., Vol. 23, No. 8, pp. 449-451, 2002.
    [2] N. V. Drozdovski and R. H. Caverly, “GaN-based high electron-mobility transistors for microwave and RF control applications,” IEEE Trans. Microw. Theory Tech., Vol. 50, No. 1, pp. 4-8, 2002.
    [3] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura and H. Ohashi, “High breakdown voltage AlGaN-GaN power-HEMT design and high current density switching behavior,” IEEE Trans. Electron Devices, Vol. 50, No. 12, pp. 2528-2531, 2003.
    [4] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao and S. S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors,” Appl. Phys. Lett., Vol. 71, No. 19, pp. 2794-2796, 1997.
    [5] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys.: Condens. Matter, Vol. 14, No. 13, pp. 3399-3434, 2002.
    [6] B. K. Ridley, “Analytical models for polarization-induced carriers,” Semicond. Sci. Technol., Vol. 19, No. 3, pp. 446-450, 2004.
    [7] Y. Liu, H. Jiang, S. Arulkumaran, T. Egawa, B. Zhang and H. Ishikawa, “Demonstration of undoped quaternary AlInGaN/GaN heterostructure field-effect transistor on sapphire substrate,” Appl. Phys. Lett., Vol. 86, No. 22, pp. 223510, 2005.
    [8] J. Kuzmík, “InAlN/(In)GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal,” Appl. Phys. Lett., Vol. 17, No. 6, pp. 540-544, 2002.
    [9] G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo, D. Langley, D. J. Denninghoff, M. Trejo and E. R. Heller, “Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-Gate devices,” IEEE Trans. Electron Devices, Vol. 54, No. 10, pp. 2589-2597, 2007.
    [10] M. Higashiwaki and T. Matsui, “Barrier thickness dependence of electrical properties and DC device characteristics of AlGaN/GaN heterostructure field-effect transistors grown by plasma-assisted molecular-beam epitaxy,” Jpn. J. Appl. Phys., Vol. 43, No. 9, pp. L1147-L1149, 2004.
    [11] F. Medjdoub, M. Alomari, J.-F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, N. Grandjean and E. Kohn, “Barrier-layer scaling of InAlN/GaN HEMTs,” IEEE Electron Device Lett., Vol. 29, No. 5, pp. 422-425, 2008.
    [12] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. Denbaars, J. S. Speck and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl. Phys. Lett., Vol. 77, No. 2, pp. 250-252, 2000.
    [13] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT’s,” IEEE Electron Device Lett., Vol. 21, No. 6, pp. 268-270, 2000.
    [14] R Vetury, N. Q. Zhang, S. Keller and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, Vol. 48, No. 3, pp. 560-566, 2001.
    [15] X. Hu, A. Koudymov, G. Simin, J. Yang, M. A. Khan, A. Tarakji, M. S. Shur and R. Gaska, “Si3N4/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors,” Appl. Phys. Lett., Vol. 79, No. 17, pp. 2832-2834, 2001.
    [16] H. Kim, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy and L. F. Eastman, “Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation,” IEEE Electron Device Lett., Vol. 24, No. 7, pp. 421-423, 2003.
    [17] J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, S. Degroote, M. R. Leys, M. Germain and G. Borghs, “Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer,” Appl. Phys. Lett., Vol. 98, No. 5, pp. 054501, 2005.
    [18] K. Jeganathan, M. Shimizu, H. Okumura, Y. Yano and N. Akutsu, “Lattice-matched InAlN/GaN two-dimensional electron gas with high mobility and sheet carrier density by plasma-assisted molecular beam epitaxy,” J. Cryst. Growth, Vol. 304, No. 2, pp. 342-345, 2007.
    [19] D. S. Katzer, D. F. Storm, S. C. Binari, B. V. Shanabrook, A. Torabi, L. Zhou and D. J. Smith, “Molecular beam epitaxy of InAlN/GaN heterostructures for high electron mobility transistors,” J. Vac. Sci. Technol. B, Vol. 23, No. 3, pp. 1204-1208, 2005.
    [20] G. V. Hansson, H. H. Radamsson and W. X. Ni, “Strain and relaxation in Si-MBE structures studied by reciprocal space mapping using high resolution X-ray diffraction,” J. Mater. Sci.-Mater. Electron., Vol. 6, No. 5, pp. 292-297, 1995.
    [21] O. Katz, A. Horn, G. Bahir and J. Salzman, “Electron mobility in an AlGaN/GaN two-dimensional electron gas. I. Carrier concentration dependent mobility,” IEEE Trans. Electron Devices, Vol. 50, No. 10, pp. 2002-2008, 2003.
    [22] H. Hasegawa, T. Inagaki, S. Ootomo and T. Hashizume, “Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors,” J. Vac. Sci. Technol. B, Vol. 21, No. 4, pp. 1844-1855, 2003.
    [23] J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, S. Degroote, M.R. Leys, M. Germain and G. Borghs, “Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer” J. Appl. Phys., Vol. 98, No. 5, 054501, 2005.
    [24] D. W. DiSanto, H. F. Sun and C. R. Bolognesi, “Ozone passivation of slow transient current collapse in AlGaN/GaN field-effect transistors: The role of threading dislocations and the passivation mechanism,” Appl. Phys. Lett., Vol. 88, No. 1, pp. 013504, 2006.
    [25] J. Antoszewski, M. Gracey, J. M. Dell, L. Faraone, T. A. Fisher, G. Parish, Y. -F. Wu and U. K. Mishra, “Scattering mechanisms limiting two-dimensional electron gas mobility in Al0.25Ga0.75N/GaN modulation-doped field-effect transistors,” J. Appl. Phys., Vol. 87, No. 8, pp. 3900-3904, 2000.
    [26] A. Hierro, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra and S. P. DenBaars, “Hydrogen passivation of deep levels in n-GaN,” Appl. Phys. Lett., Vol. 77, No. 10, pp. 1499-1501, 2000.
    [27] A. Y. Polyakov, N. Smirnov, A. Govorkov, N. Pashkova, A. Shlensky, K. Baik, S. Pearton, B. Luo, F. Ren and J. M. Zavada, “Electrical and optical properties of hydrogen plasma treated n-AlGaN films grown by hydride vapor phase epitaxy,” J. Vac. Sci. Technol. B, Vol. 22, No. 1, pp. 77-81, 2004.
    [28] S. R. Bahl and J. A. del-Alamo, “A new drain-current injection technique for the measurement of off-state breakdown voltage in FET’s,” IEEE Trans. Electron Devices, Vol. 40, No. 8, pp. 1558-1560, 1993.

    下載圖示 校內:2015-06-30公開
    校外:2015-06-30公開
    QR CODE