| 研究生: |
陳芝宇 Chen, Chih-Yu |
|---|---|
| 論文名稱: |
三維有限長度線接觸軟彈液動潤滑分析 Analysis of Three-Dimensional Soft Elastohydrodynamic Lubrication in Finite Line Contact |
| 指導教授: |
李旺龍
Li, Wang-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 軟彈液動潤滑理論 、有限長度線接觸 、雷諾方程式 、邊界負載效應 |
| 外文關鍵詞: | Elastohydrodynamic lubrication(EHL), finite length line contact, Reynolds equation, edge effect |
| 相關次數: | 點閱:113 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在機械元件相互運作時,表面接觸區若為直接接觸,則會因為直接摩擦而造成損耗,若加入適當的潤滑液則能夠降低磨損之程度,因此磨潤學(tribology)理論在這之中扮演著非常重要的角色,其包括了元件運作時的摩擦(friction)、磨耗(wear)及潤滑(lubrication)等現象。
根據潤滑液的特性,潤滑液在不同條件下會出現不同的潤滑機制,可以分為邊界潤滑(boundary lubrication)、混合潤滑(mixed lubrication)及全油膜潤滑(full-film lubrication)。全油膜潤滑又包含了液動潤滑(hydrodynamic lubrication)及彈液動潤滑(elastohydrodynamic lubrication),近年來越來越多學者研究液動壓力相對更低的軟彈液動潤滑(soft-elastohydrodynamic lubrication),軟彈液動潤滑常見於很多彈性體或者生物體的接觸,其潤滑問題即是兩接觸物體中,其中一個或者是兩者的材料是柔軟的,會使得彈性變形變得很顯著。彈液動潤滑機制主要是發生在非共形接觸(non-conformal)之機械元件中,以往較多研究了無限長線接觸彈液動潤滑,然而現實中並不存在,因此後續有人研究了有限長度線接觸彈液動潤滑,並針對其應力集中問題做了幾何外形的修正,以改善邊緣效應(edge effect)的現象。
本研究對於有限長度線接觸進行軟彈液動潤滑分析,因考慮了有限長度對於圓柱滾軸邊緣的影響,因此採用三維模型進行模擬,並探討了未修飾圓柱外形的壓力、膜厚、變形量等分佈,並將其與考慮了圓角(round corner)後的圓柱滾軸做比較,觀察兩者應力集中之現象,接著討論了不同圓柱半徑對於壓力、膜厚及變形量分佈的影響,再討論了不同的圓柱滾動速度、不同施加負載及不同基材楊氏係數的影響。
In this study, soft-EHL is analyzed with finite length line contact. Due to the consideration of the effect of finite length on the cylindrical roller edge, a three-dimensional model is used for simulation. The distribution of pressure, film thickness and deformation of unmodified cylindrical shape is also discussed, and compare it to the cylindrical roller after considering the round corner to observe the phenomenon of stress concentration between these two. Then the effects of different cylindrical radii on the distribution of pressure, film thickness and deformation are discussed.
文獻
[1] J. F. Archard, K. P. Baglin, 1986, Elastohydrodynamic Lubrication - Improvements in Analytic Solutions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 200(4), pp. 281-291.
[2] C. J. Hooke, J. P. O’Donoghue, 1972, Elastohydrodynamic Lubrication of Soft, Highly Deformed Contacts. Journal of Mechanical Engineering Science, Vol. 14(1), pp. 34-48.
[3] D. Dowson, Z. M. Jin, 1986, Micro-Elastohydrodynamic Lubrication of Synovial Joints. Engineering in Medicine, Vol. 15(2), pp. 63-65.
[4] B. J. Hamrock, D. Dowson, 1978, Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus I - Fully Flooded Conjunction. Journal of Lubrication Technology, Vol. 100(2), pp. 236.
[5] S. Stupkiewicz, J. Lengiewicz, P. Sadowski, S. Kucharski, 2016, Finite deformation effects in soft elastohydrodynamic lubrication problems. Tribology International, Vol. 93, pp. 511522.
[6] S. Stupkiewicz, 2009, Finite element treatment of soft elastohydrodynamic lubrication problems in the finite deformation regime. Computational Mechanics, Vol. 44(5), pp. 605-619.
[7] S. Stupkiewicz, A. Marciniszyn, 2009, Elastohydrodynamic lubrication and finite configuration changes in reciprocating elastomeric seals. Tribology International, Vol. 42(5), pp. 615-627.
[8] J. Lengiewicz, M. Wichrowski, S. Stupkiewicz, 2014, Mixed formulation and finite element treatment of the mass-conserving cavitation model. Tribology International, Vol. 72, pp. 143-155.
[9] H. Gao, B. Li, X. Fu, G. Yang, 2015, A Strongly Coupled Fluid Structure Interaction Solution for Transient Soft Elastohydrodynamic Lubrication Problems in Reciprocating Rod Seals Based on a Combined Moving Mesh Method, Journal of Tribology, Vol. 137(4), 041501.
[10] A. Fatu, M. Hajjam, 2011, Numerical modelling of hydraulic seals by inverse lubrication theory, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 225(12), pp. 1159-1173.
[11] Y. Öngün, M. André, D. Bartel, L. Deters, 2008, An axisy mmetric hydrodynamic interface element for finite-element computations of mixed lubrication in rubber seals, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 222(3), pp. 471-481.
[12] G. K. Nikas, R. S. Sayles, 2004, Nonlinear elasticity of rectangular elastomeric seals and its effect on elastohydrodynamic numerical analysis, Tribology International, Vol. 37(8), pp. 651-660.
[13] A. Thatte, R. F. Salant, 2009, Elastohydrodynamic Analysis of an Elastomeric Hydraulic Rod Seal During Fully Transient Operation, Journal of Tribology, Vol. 131(3), 031501.
[14] T. Schmidt, M. André, G. Poll, 2010, A transient 2D-finite-element approach for the simulation of mixed lubrication effects of reciprocating hydraulic rod seals, Tribology International, Vol. 43(10), pp. 1775-1785.
[15] J. De Vicente, J. R. Stokes, H. A. Spikes, 2006, Soft lubrication of model hydrocolloids, Food Hydrocolloids, Vol. 20(4), pp. 483-491.
[16] J. H. H. Bongaerts, K. Fourtouni, J. R. Stokes, 2007, Soft-tribology: Lubrication in a compliant PDMS–PDMS contact, Tribology International, Vol. 40(10-12), pp. 1531-1542.
[17] C. Myant, H. A. Spikes, J. R. Stokes, 2010, Influence of load and elastic properties on the rolling and sliding friction of lubricated compliant contacts, Tribology International, Vol. 43(1-2), pp. 55-63.
[18] N. Marx, J. Guegan, H. A. Spikes, 2016, Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry, Tribology International, Vol. 99, pp. 267-277.
[19] Y. Fang, J. He, P. Huang, 2017, Experimental and Numerical Analysis of Soft Elastohydrodynamic Lubrication in Line Contact, Tribology Letters, Vol. 65(2).
[20] M. Masjedi, M. Khonsari, 2016, Mixed lubrication of soft contacts: An engineering look, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 231(2), pp. 263-273.
[21] Q. D. Chen, W. L. Li, 2018, Analysis of Soft-Elastohydrodynamic Lubrication Line Contacts on Finite Thickness, Journal of Tribology, Vol. 140(4), 041502.
[22] B. Zhao, B. Zhang, K. Zhang, 2019, Modelling three-dimensional soft elastohydrodynamic lubrication contact of heterogeneous materials, Tribology International, Vol. 129, pp. 377-389.
[23] D. Dowson, G. R. Higginson, 1959, A Numerical Solution to the Elasto-Hydrodynamic Problem, Journal of Mechanical Engineering Science, Vol. 1(1), pp. 6-15.
[24] L. Chang, M. N. Webster, A. Jackson, 1993, On the Pressure Rippling and Roughness Deformation in Elastohydrodynamic Lubrication of Rough Surfaces, Journal of Tribology, Vol. 115(3), pp. 439-444.
[25] M. Masjedi, M. M. Khonsari, 2012, Film Thickness and Asperity Load Formulas for Line-Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness, Journal of Tribology, Vol. 134(1), 011503.
[26] D. Dowson, G. R. Higginson, 1996, Elastohydrodynamic Lubrication, Pergamon Press, New York.
[27] A. P. Ranger, C. M. M. Ettles, A. Cameron, 1975, The Solution of the Point Contact Elasto-Hydrodynamic Problem, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 346(1645), pp. 227-244.
[28] B. J. Hamrock, D. Dowson, 1976, Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part 1—Theoretical Formulation, ASME J. Lubr. Technol, Vol. 98, pp.223-229.
[29] B. J. Hamrock, D. Dowson, 1976, Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part 2—Ellipticity Parameter Results, ASME J. Lubr. Technol, Vol. 98, pp. 375-383.
[30] B. J. Hamrock, D. Dowson, 1977, Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part 3—Fully Flooded Results, ASME J. Lubr. Technol, Vol. 99, pp. 264-276.
[31] B. S. Andersson, 1991, Paper XVIII (iii) Company Perspectives in Vehicle Tribology – Volvo, Tribology Series, pp. 503-506.
[32] A. Mostofi, R. Gohar, 1983, Elastohydrodynamic Lubrication of Finite Line Contacts, Journal of Lubrication Technology, Vol. 105(4), pp. 598.
[33] S. Kuroda, K. Arai, 1985, Elastohydrodynamic Lubrication between Two Rollers : Finite Width Analysis, Bulletin of JSME, Vol. 28(241), pp. 1367-1372.
[34] T. J. Park, K. W. Kim, 1998, Elastohydrodynamic lubrication of a finite line contact, Wear, Vol. 223(1-2), pp. 102-109.
[35] P. M. Johns, R. Gohar, 1981, Roller Bearings Under Radial and Eccentric Loads, Tribol. Int., Vol. 14(3), pp.131-136.
[36] J. V. Poplawski, 2000, Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction, Tribology Transactions, Vol. 44(3), pp. 339-350.
[37] D. Zhu, J. Wang, N. Ren, Q. J. Wang, 2012, Mixed Elastohydrodynamic Lubrication in Finite Roller Contacts Involving Realistic Geometry and Surface Roughness, Journal of Tribology, Vol. 134(1), 011504.
[38] Y. Zhang, H. Cao, A. Kovalev, Y. Meng, 2019, Numerical Running-In Method for Modifying Cylindrical Roller Profile Under Mixed Lubrication of Finite Line Contacts, Journal of Tribology, Vol. 141(4), 041401.
[39] T, He, D. Zhu, C. Yu, Q. J. Wang, 2019, Mixed elastohydrodynamic lubrication model for finite roller-coated half s Pace interfaces, Tribology International, Vol. 134, pp. 178-189.
[40] I. Newton, 1736, Method of Fluxions, London: Henry Woodfall.
[41] J. Raphson, 1690, Analysis aequationum universalis, French: Londini.
[42] S. R. Wu, 1986, A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication, International Journal of Engineering Science, Vol. 24(6), pp. 1001-1013.
[43] W. Habchi, D. Eyheramendy, P. Vergne, G. Morales-Espejel, 2008, A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem, Journal of Tribology, Vol. 130(2), 021501.