簡易檢索 / 詳目顯示

研究生: 郭橒樺
Kuo, Yun-Hua
論文名稱: 利用自適應分區的方式在近期量子電腦上模擬氮空缺中心的非經典自由感應衰減過程
Adaptively partitioned analog quantum simulation for the nonclassical free induction decay of NV centers on near-term quantum computers
指導教授: 陳宏斌
Chen, Hong-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 48
中文關鍵詞: 量子電路氮空缺中心模擬量子物理學
外文關鍵詞: quantum circuits, NV- center, simulate quantum physics
相關次數: 點閱:116下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 早在1980年代,費曼等人就已經提出用可控的量子元件來模擬量子物理的想法。如今,隨著量子技術的快速發展,各種類型的量子計算平台不斷的被實現。同時,由於隨之而來的量子技術發展,一些大規模的量子模擬,例如類比式量子模擬可藉由操控人造哈密頓量以達到模擬大規模量子材料的效果,已經可以在設計精良量子實驗平台上實現。

    然而,由於受到顯著的雜訊以及設備上量子位元連接性的限制,大規模的模擬量子模擬在近代的量子電腦上往往是不可行的。因此,在這份研究中設計了一種模擬算法來解決這個問題,我們根據量子處理器的性能,自適應地將環境的影響分成小群。運用我們所提出的方法來模擬氮空缺中心的電子自旋如何在耦合到大量原子核自旋的環境下發生自由感應衰減過程,並深入探討由於核自旋極化所引起的非古典性。該模擬是在 IBMQ 上的真實系統和量子模擬器合作實現的。這項工作通過初步模擬對電路的性能進行了基準的測試,並揭示了一種在嘈雜的近期量子計算機上模擬大規模系統的靈活方法。此外,鑒於自旋-自旋相互作用,在量子計算機上模擬由核自旋環境引發的電子自旋移相動力學是特別方便的。另一方面,鑽石的氮空缺中心作為潛在有吸引力的技術,由於其電子自旋相干性對晶格中的熱震動的穩定性,使得室溫下的量子裝置有更大的機會得以實現。

    The idea of simulating quantum physics with controllable quantum devices had been proposed by Feynman et al. several decades ago. Nowadays, with the accelerated growth of quantum technologies, a variety of quantum computing platforms has emerged. Meanwhile, owing to the ensuing development of quantum technologies, large-scale simulations, such as the analog quantum simulation which mimics the Hamiltonian of system of interest, have become possible to be implemented on well-designed quantum experimental platforms. Nevertheless, large-scale analog quantum simulation is often infeasible on recent quantum computers due to the limitations imposed by significant noises and the connectivity of qubits on the devices.

    In this work, a simulation algorithm is designed to address this problem by adaptively dividing the effects of bath into small groups based on the performance of the quantum processor. We apply our method to simulate the electron spin free induction decay in a diamond NV− center coupling to a large number of nuclear spins and, explore the insight into the nonclassicality arising from nuclear spin polarization. The simulation is implemented collaboratively with authentic devices and quantum simulators on IBMQ. This work benchmarks circuit performance through the preliminary simulations, and reveals a flexible way to simulate largescale systems on noisy near-term quantum computers.

    Furthermore, given that the spin-spin interactions, it is particularly convenient to simulate on quantum computer an electron spin dephasing dynamics triggered by a nuclear spin bath. Another aspect, towards the NV− center for diamonds stands out as potentially attractive technology, due to the robustness of its electron spin coherence against the thermal vibration in the lattice, making room temperature quantum device possible.

    ABSTRACT i ABSTRACT (CHT) ii ACKNOWLEDGEMENT iii Contents iv List of Figures vi Chapter I Introduction 1 Chapter II Dynamics of NV− center 4 Nitrogen-vacancy center in diamond 4 Crystal structure 4 Quantum states in the NV− center 5 Hamiltonian of NV− center 6 Electron spin free induction decay procedure 10 Nuclear spin polarization 12 Chapter III Dynamical process nonclassicality 13 Chapter IV Analog quantum simulation for NV− center 16 Circuit model for NV− center 16 State preparation and polarization oracle 18 Chapter V Preliminary examinations 21 IBMQ Devices 21 Simulating nuclei on quantum computer 22 Simulating nuclei on quantum simulator 24 Chapter VI Adaptively partitioned AQS 26 Chapter VII Conclusion 31 Chapter APPENDIX 33 Simulate 510 nuclei on ibm_qasm_simulator 33 Simulate one nuclei on ibm_auckland 34 Simulate two nuclei on ibm_auckland at different qubits' position 35 The adaptively partitioned AQS results for nuclear spin baths at different qubits' position 37 References 41

    [1] R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467
    (1982).
    [2] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich,
    C. F. Roos, P. Zoller, and R. Blatt, “An open-system quantum simulator with
    trapped ions,” Nature 470, 486 (2011).
    [3] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Rev. Mod. Phys.
    86, 153 (2014).
    [4] F. Tacchino, A. Chiesa, S. Carretta, and D. Gerace, “Quantum computers as universal quantum simulators: State-of-the-art and perspectives,” Adv. Quantum Technol. 3, 1900052 (2020).
    [5] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, and P. Zoller
    “Practical quantum advantage in quantum simulation,” Nature 607, 667 (2022).
    [6] J. yoon Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization
    transition in two dimensions,” Science 352, 1547 (2016).
    [7] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and J. I. Cirac, “Analogue
    quantum chemistry simulation,” Nature 574, 215 (2019).
    [8] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli, H. Rotzinger, M. Weides, and
    A. V. Ustinov, “Analog quantum simulation of the rabi model in the ultra-strong
    coupling regime,” Nat. Commun. 8, 779 (2017).
    [9] P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas, A. Megrant, R. Barends,
    Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, B. Foxen, M. Giustina,
    E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank,
    A. Vainsencher, J. Wenner, T. White, H. Neven, D. G. Angelakis, and J. Martinis,
    “Spectroscopic signatures of localization with interacting photons in superconducting qubits,” Science 358, 1175 (2017).
    [10] J. S. C. Hung, J. H. Busnaina, C. W. S. Chang, A. M. Vadiraj, I. Nsanzineza, E. Solano, H. Alaeian, E. Rico, and C. M. Wilson, “Quantum simulation of the bosonic creutz ladder with a parametric cavity,” Phys. Rev. Lett. 127, 100503 (2021).
    [11] I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold quantum gases,” Nat. Phys. 8, 267 (2012).
    [12] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534, 667 (2016).
    [13] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551, 579 (2017).
    [14] R. Islam, E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang, J. Freericks, and C. Monroe, “Onset of a quantum phase transition with a trapped ion quantum simulator,” Nat. Commun. 2, 377 (2011).
    [15] R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nat. Phys. 8, 277 (2012).
    [16] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, “Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator,” Nature 551, 601 (2017).
    [17] A. Smith, M. S. Kim, F. Pollmann, and J. Knolle, “Simulating quantum many-body dynamics on a current digital quantum computer,” npj Quantum Inf. 5, 106 (2019).
    [18] G. García-Pérez, M. A. C. Rossi, and S. Maniscalco, “Ibm q experience as a versatile experimental testbed for simulating open quantum systems,” npj Quantum Inf. 6, 1 (2020).
    [19] L. Del Re, B. Rost, A. F. Kemper, and J. K. Freericks, “Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir on a quantum computer,”Phys. Rev. B 102, 125112 (2020).
    [20] H. Kamakari, S.-N. Sun, M. Motta, and A. J. Minnich, “Digital quantum simulation of open quantum systems using quantum imaginary–time evolution,”PRX Quantum 3, 010320 (2022).
    [21] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
    [22] F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” Nature 574, 505 (2019).
    [23] P. Jurcevic et al., “Demonstration of quantum volume 64 on a superconducting
    quantum computing system,” Quantum Sci. Technol. 6, 025020 (2021).
    [24] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and M. Troyer, “Hybrid quantumclassical approach to correlated materials,” Phys. Rev. X 6, 031045 (2016).
    [25] H. Ma, M. Govoni, and G. Galli, “Quantum simulations of materials on near-term quantum computers,” npj Comput. Mater. 6, 85 (2020).
    [26] S. Lu, M. C. Bañuls, and J. I. Cirac, “Algorithms for quantum simulation at finite
    energies,” PRX Quantum 2, 020321 (2021).
    [27] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a photonic quantum processor,” Nat. Commun. 5, 4213 (2014).
    [28] P. J. J. O’Malley et al., “Scalable quantum simulation of molecular energies,” Phys. Rev. X 6, 031007 (2016).
    [29] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, “Variational quantum algorithms,” Nat. Rev. Phys. 3, 625 (2021).
    [30] L. M. Sieberer, T. Olsacher, A. Elben, M. Heyl, P. Hauke, F. Haake, and P. Zoller,
    “Digital quantum simulation, trotter errors, and quantum chaos of the kicked top,”npj Quantum Inf. 5, 78 (2019).
    [31] M. Heyl, P. Hauke, and P. Zoller, “Quantum localization bounds trotter errors in
    digital quantum simulation,” Sci. Adv. 5, eaau8342 (2019).
    [32] L. E. Ballentine, “The statistical interpretation of quantum mechanics,” Rev. Mod. Phys. 42, 358 (1970).
    [33] W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,”Rev. Mod. Phys. 75, 715 (2003).
    [34] M. Schlosshauer, “Decoherence, the measurement problem, and interpretations of quantum mechanics,” Rev. Mod. Phys. 76, 1267 (2005).
    [35] K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012).
    [36] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,”Rev. Mod. Phys. 86, 419 (2014).
    [37] D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on
    semidefinite programming,” Rep. Prog. Phys. 80, 024001 (2017).
    [38] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
    [39] E. P. Wigner, “On the quantum correction for thermodynamic equilibrium,”Phys. Rev. 40, 749 (1932).
    [40] R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766 (1963).
    [41] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277 (1963).
    [42] S. Rahimi-Keshari, T. Kiesel, W. Vogel, S. Grandi, A. Zavatta, and M. Bellini,
    “Quantum process nonclassicality,” Phys. Rev. Lett. 110, 160401 (2013).
    [43] K. K. Sabapathy, “Process output nonclassicality and nonclassicality depth of quantum-optical channels,” Phys. Rev. A 93, 042103 (2016).
    [44] J.-H. Hsieh, S.-H. Chen, and C.-M. Li, “Quantifying quantum-mechanical processes,” Sci. Rep. 7, 13588 (2017).
    [45] A. Smirne, D. Egloff, M. G. Díaz, M. B. Plenio, and S. F. Huelga, “Coherence and
    non-classicality of quantum markov processes,” Quantum Sci. Technol. 4, 01LT01
    (2019).
    [46] S. Milz, F. Sakuldee, F. A. Pollock, and K. Modi, “Kolmogorov extension theorem for (quantum) causal modelling and general probabilistic theories,”Quantum 4, 255 (2020).
    [47] S. Milz, D. Egloff, P. Taranto, T. Theurer, M. B. Plenio, A. Smirne, and S. F. Huelga, “When is a non-markovian quantum process classical?” Phys. Rev. X 10, 041049 (2020).
    [48] A. Seif, Y.-X. Wang, and A. A. Clerk, “Distinguishing between quantum and classical markovian dephasing dissipation,” Phys. Rev. Lett. 128, 070402 (2022).
    [49] D. Chruściński, S. Hesabi, and D. Lonigro, “On markovianity and classicality in
    multilevel spin–boson models,” Sci. Rep. 13, 1518 (2023).
    [50] H.-B. Chen, C. Gneiting, P.-Y. Lo, Y.-N. Chen, and F. Nori, “Simulating open quantum systems with hamiltonian ensembles and the nonclassicality of the dynamics,”Phys. Rev. Lett. 120, 030403 (2018).
    [51] H.-B. Chen, P.-Y. Lo, C. Gneiting, J. Bae, Y.-N. Chen, and F. Nori, “Quantifying
    the nonclassicality of pure dephasing,” Nat. Commun. 10, 3794 (2019).
    [52] H.-B. Chen and Y.-N. Chen, “Canonical hamiltonian ensemble representation of dephasing dynamics and the impact of thermal fluctuations on quantum-to-classical transition,” Sci. Rep. 11, 10046 (2021).
    [53] M.-C. Lin, P.-Y. Lo, F. Nori, and H.-B. Chen, “Precession-induced nonclassicality
    of the free induction decay of nv centers by a dynamical polarized nuclear spin bath,”J. Phys.: Condens. Matter 34, 505701 (2022).
    [54] “Ibm quantum services,” https://quantum-computing.ibm.com/services .
    [55] D. A. Redman, S. Brown, R. H. Sands, and S. C. Rand, “Spin dynamics and electronic states of n-v centers in diamond by epr and four-wave-mixing spectroscopy,”Phys. Rev. Lett. 67, 3420 (1991).
    [56] P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement
    among single spins in diamond,” Science 320, 1326 (2008).
    [57] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281 (2006).
    [58] G.-Q. Liu, X.-Y. Pan, Z.-F. Jiang, N. Zhao, and R.-B. Liu, “Controllable effects of
    quantum fluctuations on spin free-induction decay at room temperature,” Sci. Rep.
    2, 432 (2012).
    [59] J. R. Maze, A. Dréau, V. Waselowski, H. Duarte, J.-F. Roch, and V. Jacques, “Free
    induction decay of single spins in diamond,” New J. Phys. 14, 103041 (2012).
    [60] S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, “Quenching spin decoherence in diamond through spin bath polarization,” Phys. Rev. Lett. 101, 047601 (2008).
    [61] P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M. B. Plenio, M. Katagiri,
    T. Teraji, S. Koizumi, J. Isoya, R. Fischer, L. P. McGuinness, B. Naydenov, and F. Jelezko, “Detecting and polarizing nuclear spins with double resonance on a single electron spin,” Phys. Rev. Lett. 111, 067601 (2013).
    [62] V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen, J. Meijer, F. Kaiser,
    G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Dynamic polarization of single
    nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at
    room temperature,” Phys. Rev. Lett. 102, 057403 (2009).
    [63] R. Fischer, C. O. Bretschneider, P. London, D. Budker, D. Gershoni, and L. Frydman, “Bulk nuclear polarization enhanced at room temperature by optical pumping,”Phys. Rev. Lett. 111, 057601 (2013).
    [64] G. A. Álvarez, C. O. Bretschneider, R. Fischer, P. London, H. Kanda, S. Onoda,
    J. Isoya, D. Gershoni, and L. Frydman, “Local and bulk 13c hyperpolarization in
    nitrogen-vacancy-centred diamonds at variable fields and orientations,” Nat. Commun. 6, 8456 (2015).
    [65] J. P. King, K. Jeong, C. C. Vassiliou, C. S. Shin, R. H. Page, C. E. Avalos, H.-J.
    Wang, and A. Pines, “Room-temperature in situ nuclear spin hyperpolarization
    from optically pumped nitrogen vacancy centres in diamond,” Nat. Commun. 6,
    8965 (2015).
    [66] J. Scheuer, I. Schwartz, Q. Chen, D. Schulze-Sünninghausen, P. Carl, P. Höfer,
    A. Retzker, H. Sumiya, J. Isoya, B. Luy, M. B. Plenio, B. Naydenov, and F. Jelezko,
    “Optically induced dynamic nuclear spin polarisation in diamond,” New J. Phys 18, 013040 (2016).
    [67] T. Chakraborty, J. Zhang, and D. Suter, “Polarizing the electronic and nuclear spin of the NV-center in diamond in arbitrary magnetic fields: analysis of the optical
    pumping process,” New J. Phys 19, 073030 (2017).
    [68] J. Scheuer, I. Schwartz, S. Müller, Q. Chen, I. Dhand, M. B. Plenio, B. Naydenov,
    and F. Jelezko, “Robust techniques for polarization and detection of nuclear spin
    ensembles,” Phys. Rev. B 96, 174436 (2017).
    [69] Y. Hovav, B. Naydenov, F. Jelezko, and N. Bar-Gill, “Low-field nuclear polarization using nitrogen vacancy centers in diamonds,” Phys. Rev. Lett. 120, 060405 (2018).
    [70] J. Henshaw, D. Pagliero, P. R. Zangara, M. B. Franzoni, A. Ajoy, R. H. Acosta, J. A.
    Reimer, A. Pines, and C. A. Meriles, “Carbon-13 dynamic nuclear polarization in
    diamond via a microwave-free integrated cross effect,” Proc. Natl. Acad. Sci. U.S.A.
    116, 18334 (2019).
    [71] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
    [72] U. Weiss, Quantum Dissipative Systems, 4th ed. (World Scientific, Singapore,
    2012).
    [73] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, “Colloquium: Non-markovian
    dynamics in open quantum systems,” Rev. Mod. Phys. 88, 021002 (2016).
    [74] I. de Vega and D. Alonso, “Dynamics of non-markovian open quantum systems,”Rev. Mod. Phys. 89, 015001 (2017).
    [75] H.-B. Chen, N. Lambert, Y.-C. Cheng, Y.-N. Chen, and F. Nori, “Using nonmarkovian measures to evaluate quantum master equations for photosynthesis,” Sci. Rep. 5, 12753 (2015).
    [76] C. M. Kropf, C. Gneiting, and A. Buchleitner, “Effective dynamics of disordered
    quantum systems,” Phys. Rev. X 6, 031023 (2016).
    [77] H.-B. Chen, “Effects of symmetry breaking of the structurally-disordered hamiltonian ensembles on the anisotropic decoherence of qubits,” Sci. Rep. 12, 2869 (2022).

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE