簡易檢索 / 詳目顯示

研究生: 蘇郁珊
Su, Yu-Shan
論文名稱: YPO4和YVO4共摻雜Tb3+與Yb3+離子探討量子切割下轉換機制
Quantum Cutting Down-Conversion from Tb3+ to Yb3+ Co-Doped in YPO4 and YVO4
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 下轉換Tb3+-Yb3+系統螢光粉
外文關鍵詞: Down-conversion, Tb3+, Yb3+ system, phosphor
相關次數: 點閱:44下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本研究中,本團隊嘗試使用低溫(200℃)、高反應時間(24h)之水熱法,合成擁有下轉換能力之螢光粉體-YEO4(E=P或V)共摻雜鋱離子(Tb3+)與鐿離子(Yb3+)。在本實驗中,我們成功合成出了具有下轉換機制之粉體,並且在室溫環境中,透過473 nm雷射激發下,成功放出一系列Tb3+之藍綠光放光 (4D5 → 7FJ),以及透過下轉換機制將能量透過Tb3+離子轉換到Yb3+離子上,而放出的近紅外光 (2F5/2 → 2F7/2)。首先,本團隊嘗試改變Yb3+離子之摻雜濃度,來觀察可見光區段與近紅外光區段之放光有甚麼不同。發現到通常Yb3+離子之摻雜濃度為5%時,會獲得最佳之可見光與近紅外光強度;之後,由於濃度淬減效應(concentration quenching effect),放光強度即會隨著Yb3+離子之摻雜濃度增加而下降。接著,我們進一步透過觀察近紅外光放光強度與入射激發光源能量之關係,發現到在YEO4 (E=P或V)共摻雜鋱離子(Tb3+)與鐿離子(Yb3+)系統中,其量子切割能量轉換的機制傾向於透過中間虛擬能階(Intermediate virtual state)進行能量轉換。以上各系統,對於減少太陽能電池廢熱進而增加轉換效率有相當不錯之前瞻性。

    In this research, we have successfully synthesized YEO4 (E=P or V) co-doped with Tb3+ and Yb3+ phosphor which is capable to conduct down-conversion in low temperature (200℃) and long reaction time (24h). Next, we use the 473 nm laser to excite the phosphor, then, we measure the visual emissions which come from the Tb3+ (4D5 → 7FJ) and also the NIR emissions which corresponding to the Yb3+ (2F5/2 → 2F7/2), energy transfer from the Tb3+.
    Later, we try to adjust the concentration of Yb3+. The highest emission of visual and NIR are appearing as the concentration of Yb3+ is 5%. As the concentration of Yb3+ higher than 5%, the emission intensity of visual and NIR are lower, due to the concentration quenching effect.
    Furthermore, we try to figure out the quantum cutting energy transfer mechanism of Tb3+-Yb3+ system co-doped in YEO4 (E=P or V) by the slope of the logarithmic dependence of 1%Tb3+, 5%Yb3+ NIR down-conversion emission intensity as a function of logarithmic of input excitation power. However, both two systems prefer to appear the energy transferring via intermediate virtual level process, where the energy transfer is from one Tb3+ ion to two Yb3+ ions mediated by a virtual level.
    All the systems above are the promising materials as reducing the loss of energy in conventional solar cells and also enhancing their efficiencies.

    摘要………………………………………………………………………...………I Abstract……………………………………………………………………………II 誌謝………………………………………………………………………………XI 總目錄…………………………………………………………………………XII 表目錄…………………………………………………………………………XV 圖目錄…………………………………………………………………………XVI 1第一章 緒論 1 1-1 前 言 1 1-2 研究動機 3 1-3 本文綱要 4 2第二章 文獻回顧 5 2-1 下轉換材料 5 2-1.1 能量轉換機制 6 2-1.2 下轉換材料之能量轉換機制 9 2-1.3 下轉換材料之濃度淬滅效應 12 2-1.4 常見NIR-QC下轉換材料合成方法之比較 14 2-1.5 常見NIR-QC下轉換之材料、發光特性與量子效率 15 2-2 YPO4、YVO4、Tb3+與Yb3+之特性 17 2-2.1 YPO4之特性 17 2-2.2 YVO4之特性 19 2-2.3 鋱(Terbium, Tb)之特性 20 2-2.4 鐿(Ytterbium, Yb)之特性 22 2-2.5 Tb3+、Yb3+雙離子系統之特性 24 2-3 Tb3+、Yb3+之量子切割下轉換機制 26 3第三章 實驗步驟及分析儀器 30 3-1 實驗材料 30 3-2 實驗流程 31 3-2.1 實驗流程圖 31 3-2.2 YEO4: Tb3+, Yb3+(E=P或V)粉末之製備 33 3-3 分析儀器介紹 34 3-3.1 X光繞射儀(XRD) 34 3-3.2 X射線光學能譜儀(XPS) 35 3-3.3 高解析掃描式電子顯微鏡(HR-SEM) 36 3-3.4 紫外-可見分光光度計(UV-UIS) 37 3-3.5 光致發光分析(PL) 38 4第四章 結果與討論 40 4-1 YPO4: Tb3+, Yb3+之分析 40 4-1.1 YPO4: Tb3+, Yb3+之形貌分析 40 4-1.2 YPO4: Tb3+, Yb3+之結構 44 4-1.3 YPO4: Tb3+, Yb3+之吸收光譜 48 4-1.4 YPO4: Tb3+, Yb3+之發光特性 49 4-2 YVO4: Tb3+, Yb3+之分析 52 4-2.1 YVO4: Tb3+, Yb3+之形貌分析 52 4-2.2 YVO4: Tb3+, Yb3+之結構 55 4-2.3 YVO4: Tb3+, Yb3+之吸收光譜 59 4-2.4 YVO4: Tb3+, Yb3+之發光特性 60 4-3 YEO4: Tb3+, Yb3+(E=P或V)發光特性之比較 63 4-4 YEO4: Tb3+, Yb3+(E=P或V)之發光機制分析 65 4-5 YEO4: Tb3+, Yb3+(E=P或V)之光子下轉換比例分析68 5第五章 結論及未來展望 70 6第六章 參考文獻 71

    1. B. S. Anandakumar, M.B.M.R., C. N. Tharamani, M. A. Pasha, G. T. Chandrappa, Combustion‐derived CuO nanoparticles: An effective and environmentally benign catalyst in the synthesis of aromatic nitriles from aromatic aldehydes. Chinese Journal of Catalysis, 2013. 34: p. 704-710.
    2. J. L. Yuan, X.Y.Z., J. T. Zhao, Z. J. Zhang, H. H. Chen, X.X. Yang, Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor. Journal of Physics D: Applied Physics, 2008. 41: p. 105406-105411.
    3. I. A. A. Terra, L.J.B.-G., J. M. Carvalho, M. C. Terrile, M. C. F. C. Felinto, H. F. Brito, L. A. O. Nunes, Spectroscopic properties and quantum cutting in Tb3+-Yb3+ co-doped ZrO2 nanocrystals. 2013. 113: p. 073105.
    4. 林穆琳 綠色能源設備‧打造零耗能的潔淨家園. 2007.
    5. M. Pagliaro, G.P., R. Ciriminna, Flexible solar cells. 2008.
    6. J. Zhao, C.G., T. Li, Near-infrared down-conversion and energy transfer mechanism of Ce3+-Yb3+ co-doped Ba2Y(BO3)2Cl phosphors. ECS Journal of Solid State Science and Technology, 2016. 5(1): p. R3055-R3058.
    7. W. W. Piper, F.S.H., Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light. Journal of Luminescence, 1974. 8: p. 344-348.
    8. J. L. Sommerdijk, A.B., A. W. Jager, Luminescence of Pr3+-activated fluorides. Journal of Luminescence, 1974. 9: p. 288-296.
    9. J. L. Sommerdijk, A.B., A. W. Jager, Two photon luminescence with ultraviolet excitation of trivalent praseodymium. Journal of Luminescence, 1974. 8: p. 341-343.
    10. Pauli, "armchair physicists", and "not even wrong". 2012; Available from: https://skullsinthestars.com/2012/02/26/pauli-armchair-physicists-and-not-even-wrong/.
    11. Dexter, D.L., Possibility of luminescent quantum yields greater than unity. Physical Review, 1957. 108: p. 630.
    12. Q. Y. Zhang, X.Y.H., Recent progress in quantum cutting phosphors. Progress in Materials Science, 2010. 55: p. 353-427.
    13. Auzel, F., Up-conversions in RE-doped Solids, in Spectroscopic Properties of Rare Earths in Optical Materials, D.G. Liu, Editor. 2005, Springer Berlin Heidelberg. p. 266-319.
    14. Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen. Physik, 1948. 437: p. 55-75.
    15. Fluorescence resonance energy transfer.
    16. L. Mehrkam, F.W., Optical properties of excited states in solids. Vol. 8. 1975, Plenum Press, New York: Springer US.
    17. R.T. Wegh, H.D., K.D. Oskam, A. Meijerink, Visible quantum cutting in Eu3+-doped gadolinium fuorides via downconversion. Journal of Luminescence, 1999. 82: p. 93-104.
    18. 柯韋志, 氮氧化物螢光粉.
    19. J. X. Qian, Z.H.B., X. Y. Zhang, Preparation and luminescence properties of PbF2:Er3+,Yb3+ up-conversion light-emitting materials. Journal of the Chinese Ceramic Society, 2013. 41: p. 1725-1729.
    20. P. Vergeer, T.J.H.V., M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, A. Meijerink, Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+. Physical Review B, 2005. 71: p. 014119.
    21. Q. Y. Zhang QY, G.F.Y., Z. H. Jiang, Cooperative downconversion in GdAl3[BO3]4:RE3+, Yb3+ [RE = Pr, Tb, and Tm]. Applied Physics Letters, 2007. 91: p. 051903.
    22. Q. Y. Zhang QY, G.F.Y., Z. H. Jiang, X. H. Ji, Concentration-dependent near-infrared in GdBO3:Tb3+, Yb3+ nanophosphors. Applied Physics Letters, 2007. 90: p. 061914.
    23. Q. Y. Zhang, X.F.L., Cooperative quantum cutting in Y3Al5O12:RE, Yb [RE = Tb, Tm, and Pr] nanophosphors. Journal of the Society for Information Display, 2008. 16: p. 755-758.
    24. X. Y. Huang, Q.Y.Z., Efficient near-infrared downconversion in Zn2SiO4:Tb3+, Yb3+ thin-films. Applied Physics, 2009. 105: p. 053521.
    25. G. Lakshminarayana, J.R.Q., Near-infrared quantum cutting in RE3+/Yb3+ (RE = Pr, Tb, and Tm): GeO2 - B2O3 - ZnO - LaF3 glasses via downconversion. Journal of Alloys and Compounds, 2009. 481: p. 582-589.
    26. L. C. Xie , Y.H.W., H. J. Zhang, Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer. applied Physics Letters, 2009. 94: p. 061905.
    27. G. Lakshminarayana, H.C.Y., S. Ye, Y. Liu, J. R. Qiu, Cooperative downconversion luminescence in Tm3+/Yb3+: SiO2 - Al2O3 - LiF - GdF3 glasses. Journal of Physics D: Applied Physics, 2008. 41: p. 175111.
    28. S. Ye, B.Z., J. Luo, J. X. Chen, G. Lakshminarayana, J. R. Qiu, Enhanced cooperative quantum cutting in Tm3+ - Yb3+ codoped glass ceramics containing LaF3 nanocrystals. Optical Express, 2008. 16: p. 8989-8994.
    29. D. Q. Chen, Y.S.W., Y. L.Yu, P. Huang, F. Y. Weng, Near-infrared quantum cutting in transparent nanostructured glass ceramics. Optical Letters, 2008. 33: p. 1884-1886.
    30. A. K. Parchur, A.I.P., S. B. Rai, R. Tewari, R. K. Sahu, G. S. Okram, R. A. Singh, R. S. Ningthoujam, Observation of intermediate bands in Eu3+ doped YPO4 host: Li+ ion effect and blue to pink light emitter. American Institute of Physics Advances, 2012. 2: p. 032119-032136.
    31. M. Tan, S.H., X. Meng, J. Liu, Y. Shang, C. Yang, G. Chen, pH mediated control synthesis of lanthanide-doped YPO4 upconversion nano/microcrystals. American Journal of Engineering and Applied Sciences, 2015. 8: p. 310-317.
    32. A. K. Parchur, R.S.N., Preparation, microstructure and crystal structure studies of Li+ co-doped YPO4:Eu3+. The Royal Society of Chemistry, 2012. 2: p. 10854-10858.
    33. Yttrium vanadate (YVO4) crystal. 1998; Available from: http://www.u-oplaz.com/fiber/fiber002.html.
    34. YVO4: Yttrium vanadate. Available from: http://www.opt-oxide.com/en/singlecrystals/s-products/yvo4/.
    35. G. H. Du, P.L., W. W. Guo, Y. B. Han, J. P. Zhang, Z. W. Ma, J. B. Han, Z. L. Liu, K. L. Yao, The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals. Journal of Materials Chemistry C, 2013. 1: p. 7608-7613.
    36. Terbium. 2016; Available from: https://en.wikipedia.org/wiki/Terbium.
    37. F. Xia, S.L., Y. Wang, J. Mao, X. Li, Y. Wang, G. Chen, Fast and intense green. Scientific Reports, 2015. 5: p. 15387-15391.
    38. N. Rakov, W.L.B., E. L. Falcão-filho, R. B. Guimarães, G. S. Maciel, C. B. de Araújo, Three- and four-photon excited upconversion luminescence in terbium doped lutetium silicate powders by femtosecond laser irradiation. Optical Materials Express, 2013. 3: p. 194820-194826.
    39. Hammond, C.R., Handbook of Chemistry and Physics, in Handbook of Chemistry and Physics, D.R. Lide, Editor. 2000, CRC: Cleveland, Ohio.
    40. Ytterbium. 2016; Available from: https://en.wikipedia.org/wiki/Ytterbium.
    41. M. Eilchi, P.P., Gain saturation in optical fiber laser amplifiers. 2016, Fiber Laser.
    42. Richards, B.S., Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Solar Energy Materials & Solar Cells, 2006. 90: p. 1189-1207.
    43. T. Trupke, M.A.G., P. Würfel, Improving solar cell efficiencies by down-conversion of high-energy photons. Journal of Applied Physics, 2002. 92: p. 1668-1674.
    44. Richards, B.S., Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Solar Energy Materials & Solar Cells, 2006. 90: p. 2329-2337.
    45. W. Strek, A.B., P.J. Deren, Powder dependence of luminescence of Tb3+-doped KYb(WO4)2 crystal. Journal of Luminescence, 2001. 92: p. 229-235.
    46. Q. Q. Duan, F.Q., Z. G. Zhang, W. W. Cao, Quantum cutting mechanism in NaYF4:Tb3+, Yb3+. Optical Letters, 2012. 37: p. 521-523.
    47. X. T. Wei, J.B.Z., Y. H. Chen, M. Yin, Y. Li, Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor. Chinese Physics B, 2010. 19: p. 077804.

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE