| 研究生: |
鄒宜錚 Tsou, Yi-Jeng |
|---|---|
| 論文名稱: |
醇類蒸汽處理對三氧化鎢薄膜光電化學反應影響之研究 Influence of Alcohol Vapor Treatment on Nanocrystalline WO3 Films Used for Photoelectrochemical Reaction |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 溶膠-凝膠法 、光電化學反應 、三氧化鎢 、醇類蒸汽處理 |
| 外文關鍵詞: | sol-gel method, alcohol vapor treatment, photoelectrochemical reactions, tungsten trioxide |
| 相關次數: | 點閱:83 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶膠-凝膠法製備出n型半導體三氧化鎢薄膜,作為光分解水系統中的陽極電極。藉由加入非離子型界面活性劑P123作為模版,經由鍛燒合成出具有孔洞性的三氧化鎢薄膜。之後,再以醇類蒸汽、水蒸汽、正己烷蒸汽進行140℃、18小時處理。蒸汽處理前、後之性質以X光繞射、UV-visible、掃描式電子顯微鏡以及X光吸收光譜進行分析。關於蒸汽處理前、後對於三氧化鎢薄膜光電化學反應之影響,在本研究有詳細探討。
不同溶液蒸汽影響三氧化鎢薄膜的光電化學反應。利用醇類蒸汽140℃、18小時進行處理後,在1 M的HClO4電解液中,以AM 1.5的太陽光模擬照射下,其光電流值比未經過蒸汽處理之三氧化鎢薄膜更為優異。以X光吸收光譜分析後發現,經由醇類蒸汽處理後其氧空缺(oxygen vacancy) 密度降低,故光激發電子在傳遞上較不易被缺陷捕捉(trap),進而得到較優異的光電流。我們也利用IMPS (Intensity-Modulated Photocurrent Spectroscopy) 分析,證實經由醇類蒸汽處理後其擁有較快的電子傳遞速度,以及較優異的光電化學反應。
N-type nanocrystalline WO3 mesoporous films were prepared by sol-gel route and served as photoelectrodes for water splitting. A block copolymer, P123, was used as template in synthesis and was removed by calcinations, leading to formation of the porous WO3 films. And then, the films were subsequently subjected to a Teflon-lined autoclave at 140℃ for 18 hours, the solution was 40 ml alcohol, water, hexane respectively, the films didn’t contact with solution. Characterization of the WO3 films has been performed by using X-ray diffraction, UV-visible, scanning electron microscopy and X-ray absorption fine structure.
Different solution vapor affect the photoelectrochemical reactions of the WO3 films, the photoelectrochemical reactions of the WO3 films could enhance after alcohol vapor treatment. From X-ray absorption fine structure analysis, we found that the transfer efficiency of photogenerated electrons can be correlated with the coordination number (CN) of W6+ ions. An alcohol vapor treatment is developed to promote the CN of W6+ in the WO3 films, thereby to enhance the electron transport and water splitting of the WO3 films. We also subjected the films to analysis with intensity modulated photocurrent spectroscopy (IMPS), the result also showed a better photoelectrochemical reactions and higher electron transport rate after alcohol vapor treatment.
[1]K. Rajeshwar, J. Appl. Electrochem., 2007, 37, 765.
[2]M. Grätzel, Nature, 2001, 414, 338.
[3]C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc., 2001, 123, 10639.
[4]C. Santato, M. Ulmann, J. Augustynski, J. Adv. Mater., 2001, 13, 511.
[5]C. Santato, M. Ulmann, J. Augustynski, J. Phys. Chem. B, 2001, 105, 936.
[6]B. Cole, B. Marsen, E. Miller, Y. Yan, B. To, K. Jones, M. Al Jassim,
J. Phys. Chem. C, 2008, 112, 5213.
[7]P. A. Cox, Transition Metal Oxides, Clarendon Press, Oxford, 1995.
[8]P. M. Woodward, A. Sleight, W. T. Vogt, J. Solid state Chem., 1997, 131, 9.
[9]Y. M. O. Solonin, Y. Khyzhun, E. A. Graivoronskaya, Cryst. Growth Des., 2001, 1, 473.
[10]A. G. Souza Filho, J. M. Filho, V. N. Freire, A. P. Ayala, J. M. Sasaki, P. T. C. Freire, F. E. A. Melo, J. F. Juliäo, U. U. Gomes, J. Raman Spectrosc. 2001, 32, 695.
[11]W. Kehl, R. Hay, D.Wahl, J. Appl. Phys. 1952, 23, 212.
[12]E. Saljie, Acta crystallogr. B. 1977, 33, 547.
[13]S. Tanisaki, J. Phys. Soc. Jpn. 1960, 15, 573.
[14]B. O. Loopstra, H. Rietveld, Acta Crystallogr. B, 1969, 25, 1420.
[15]R. Diehl, G. Brandt, E. Saljie, Acta Crystallogr. B, 1978, 34, 1105.
[16]P. Woodward, A. Sleight, T. Vogt, J. Phys. Chem. Solids, 1995, 56, 1035.
[17]E. Saljie, Ferroelectrics, 1976, 12, 215.
[18]M. N. Huda, Y. Yan, C. Y. Moon, S. H. Wei, M. M. Al-Jassim, PHYSICAL REVIEW B, 2008, 77, 195102.
[19]S. K. Deb, Sol. Energy Mater. Sol. Cells, 2008, 92, 245.
[20]S. J. Babinec, Sol. Energy Mater. Sol. Cells, 1992, 25, 269.
[21]A. Watcharenwong, W. Chanmanee, N. R. de Tacconi, C. R. Chenthamarakshan, P. Kajitvichyanukul, K. Rajeshwar, J. Electroanalytical Chem., 2008, 612, 112.
[22]N. Ozer, Thin Solid Films. 1997, 304, 310.
[23]M. A. Butler, J. Appl. Phys., 1997, 48, 1914.
[24]I. Bedja, S. Hotchandani, R. Carpentier, K. Vinodgopal, P. V. Kamat, Thin Solid Films, 1994, 247, 195.
[25]李佩珊, 孔洞性三氧化鎢薄膜光分解水電極之製備與研究, 國立成功大學化學工程研究所碩士論文, 2007.
[26]R. A. Walton, Prog. Inorg. Chem. 1972, 16, 1.
[27]P. Judeinstein, J. Livage, J. Mater. Chem. 1991, 1.
[28]C. Cantalini, M. Z. Atashbar, Y. Li, M. K. Ghantasala, S. Santucci, W. Wlodarski, M. Passacantando, J. Vac. Sci. Technol. A. 1999, 17, 1873.
[29]S. Badilescu, P. V. Ashrit, Solid State Ion. 2003, 158, 187.
[30]W. Cheng, E. Baudrin, B. Dunn, J. I. Zink, J. Mater. Chem. 2001, 11, 92.
[31]E. Ozkan, S.-H. Lee, P. Liu, C. E. Tracy, F. Z. Tepehan, J. R. Pitts, S. K. Deb, Solid State Ion. 2002, 149, 139.
[32]M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley, 1978.
[33]T. F. Todros, Surfactants; Academic Press, London, 1984.
[34]Y. Moroi, Micelles, 1911.
[35]張有義; 郭蘭生, 膠體界面化學入門, 高立, 1988.
[36]王鳳英, 界面活性劑, 高立, 1933.
[37]Bard-Stratmann, Semiconductor Electrodes and Photoelectrochemistry, WILEY-VCH, 2001.
[38]S. Licht, Semiconductor Electrodes and Photoelectrochemistry, Wiley-VCH, Weinheim, 2002.
[39]A.E. Becquerel, Acad. Science. 1839, 9, 561.
[40]W.H. Brattain, C.G.B. Garret, Semiconductor Surface Phenomena in Semiconducting Materials, Proc. Conf. Univ. Reading, England, 1951, 37.
[41]W.H. Brattain, C.G.B. Garrett, Phys. Rev. 1955, 99, 376.
[42]A. Fujishima, K. Honda, Nature. 1972, 238, 37.
[43]H. Gerischer, Semiconductor Electrochemistry: in Physical Chemistry: An Advanced Ttreatise; Academic Press, New York, 1970, p.463.
[44]V.A. Myamlin, Y.V. Pleskov, Electrochemistry of Semiconductors; Plenum Press, New York, 1967.
[45]A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1.
[46]N. Sato, Electrochemistry at Metal and semiconductor electrodes; Elsevier, New York, 1998.
[47]K. P. Wang, H.S. Teng, Appl. Phys. Lett., 2007, 91, 173102.
[48]A. Watcharenwong, W. Chanmanee, N. R. de Tacconi, C. R. Chenthamarakshan, P. Kajitvichyanukul, K. Rajeshwar, J. Electroanal. Chem., 2008, 612, 112.
[49]K. Shankar, G. K Mor, H. E Prakasam, S. Yoriya, M. Paulose, O. K Varghese, C. A Grimes, Nanotechnology. 2007, 18, 065707.
[50]P. Chatchai, Y. Murakami, S.-Y. Kishioka1, A. Y. Nosaka, Y. Nosaka, Electrochimica Acta., 2009, 54, 1147.
[51]B. Yang, P. R. F. Barnes, Y. Zhang, V. Luca, Catal Lett, 2007,118,280.
[52]B. Cole, B. Marsen, E. Miller, Y. Yan, B. To, K. Jones, M. Al-Jassim, J. Phys. Chem. C, 2008, 112, 5213.
[53]T. Kubo, Y. Yamasaki, A. Nakahira, J. Am. Ceram. Soc. 2008, in press.
[54]S. Sharma, O. K. Varghese, G. K. Mor, T. J. LaTempa, N. K. Allam, C. A. Grimes,
J. Mater. Chem., 2009, 19, 3895.
[55]Y. Kim, B. J. Yoo, R. Vittal, Y. Lee, N. G. Park, K. J. Kim, J. Power Sources, 2008, 175, 914.
[56]劉志宏, 應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究, 私立中原大學博士論文, 2005.
[57]B. Chapman, Glow Discharge Process, John Wiley & Sons, Canada, 1980.
[58]楊順文, 電漿聚合碳氮層-TPX 複合膜應用於氧氮分離之研究,私立中原大學碩士論文, 2002.
[59]B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice, 2001.
[60]A. Kudo, H. Kato, I. Tsuji, Chem. Lett. 2004, 33, 1534.
[61]L. M. Peter, K. G. U. Wijayantha, Electro. Commun., 1999, 1, 576.
[62]L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shwa, I. Uhlendorf, J. Phys. Chem. B, 1997, 101, 10281.
[63]G. Schlichthörl, S. Y. Huang, J. Spraque, A. J. Frank, J. Phys. Chem. B, 1997, 101, 8141.
[64]K. B. Teo, EXAFS:Basic Principle and Data Analysis, Springer-Verlag, New York, 1998.
[65]D. C. Koningsberger, R. Prins, X-Ray Absorption: Principles, Application, Techniques of EXAFS, SEXAFS, and XANES, John Wiley, New York, 1988.
[66]A. Kudo, H. Kato, I. Tsuji, Chem. Lett., 2004, 33, 1534.
[67]M. A. Butler, J. Appl. Phys., 1997, 48, 1914.
[68]B. Balamurugan, I. Aruna, B. R. Mehta, S. M. Shivaprasad, Phys. Rev. B. 2004, 69,165419.
[69]H. Wang, T. Lindgren, J. He, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B, 2000, 104, 5686.
[70]J. Purans, A. Kuzmin, Proc. SPIE, 1997, 2968, 174.