簡易檢索 / 詳目顯示

研究生: 林健勤
Lin, Jian-Chin
論文名稱: 雙Rhodamine型化學感測器設計及鈀離子螢光感測應用研究
Synthesis and Characterization of Bis-Rhodamine Appended Fluorescent Pd2+ Chemosensor
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 76
中文關鍵詞: 化學感測器雙胺分子鈀離子感測器希夫鹼
外文關鍵詞: Chemosensor, bis-Rhodamine, Pd2+ sensing, Schiff base
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成以雙邊Rhodamine基團為主體的化學感測器,分子結構設計上以Rhodamine及希夫鹼做為分子辨識基團。本研究合成的化學感測器在可見光-紫外光分光光譜及螢光光譜的量測下,對鈀離子皆具有高度的選擇性及靈敏度。且在同時具有其他金屬離子的狀況下,鈀離子的感測性亦不會受到影響,顯示BRI對鈀離子具有優異的選擇性。實驗結果顯示,隨著鈀離子數量的增加,固定感測器分子濃度之溶液吸收度及螢光亮度亦隨之增加;尤其吸收度與增加的鈀離子數量呈現良好量化趨勢,代表其穩定的感測特性。而在感測分子鍵結模型部分,本研究以Job’s plot測定化學感測器分子與鈀離子形成錯合物的鍵結數目。由核磁共振氫譜與紅外光光譜推得,分子中的酮基與希夫鹼上的氮原子會與鈀離子螯合,進而生成開環結構體。開環BRI分子具有較長的共軛鏈,因而可改變顏色且發出螢光,此光學特性使BRI分子具有離子感測功能。本研究合成的化學感測器之感測機制是可逆反應,加入硫化鈉水溶液可使感測器釋放鈀離子,回復至原先的閉環分子結構。

    A bis-rhodamine appended Schiff base derivative (BRI) has been designed as colorimetric as well as fluorescent sensor for the selective detection of Pd2+. The synthesis and the spectroscopic sensing characterization of the BRI probe were carried out. The probe BRI exhibited high sensitivity and selectivity towards Pd2+ in solution of acetonitrile/water (3:2, v/v). In the presence of Pd2+, BRI exhibited obvious absorption at 556.5 nm and fluorescence emission at 591 nm. Those peaks increased with increasing of Pd2+ concentration. Results of ion selectivity show that the intensity of the BRI-Pd2+ complex was not affected by the presence of other metal ions. 1H-NMR and FT-IR spectroscopic investigations of BRI and BRI-Pd2+ revealed that the -C=N- groups and spirolactam of rhodamine B are capable of coordinating cation guest species. Furthermore, Job’s plot profile exhibited that each BRI may coordinate with 1.8 Pd2+ ions under the conditions. Based on these results, a schematic representation of BRI coordinated with two Pd2+ ions was proposed. It was found that coordination of BRI with Pd2+ ions caused ring opening of BRI. Emission of fluorescence could be due to the formation of long conjugation construction of ring-opening BRI. The coordination behaviors of BRI were reversible. Addition of sodium sulfide into the system may cause the releasing of Pd2+ leads to the ring-closing of BRI probe.

    摘要 I Abstract II 誌謝 III List of Schemes VI List of Figures VII I. Introduction 1 1-1 Overview of Chemosensors for metal ions 1 1-2 Research Motivation 3 II. Literature Review 5 2-1 Sensors-Overview 5 2-2 Fluorescent Chemosensor 8 2-2-1 Fluorophore 10 2-2-2 Receptor 12 2-3 Common fluorescence mechanism for chemosensors 14 2-3-1 Photo Induced Electron transfer (PET) mechanism 15 2-3-2. Intramolecular charge transfer (ICT) mechanism 17 2-3-3 Resonance energy transfer (RET) mechanism 18 2-3-3-1 Fluorescence resonance energy transfer (FRET) 18 2-3-3-2 Through-bond energy transfer (TBET) 20 2-4 Rhodamine-based palladium chemosensor 22 2-4-1 Brief introduction to Rhodamine chemoesensors 22 2-4-2 Based on Pd2+ induced reactions 26 2-4-3 Based on coordination reaction 30 III. Experimental Section 39 3-1 Materials 39 3-2 Instruments 40 3-3 Synthesis of precursors and probe 41 IV. Results and Discussion 43 4-1 Characterization of the synthesized compounds 43 4-2 Effect of pH on BRI 48 4-3 Metal ions sensing of BRI via UV-vis and fluorescence spectroscopy 50 4-4 Response time of sensing activity 54 4-5 Selectivity of BRI chemosensor 56 4-6 Kinetics and sensitivity study 58 4-7 Sensing Mechanism of BRI with palladium ion 62 4-8 Reversible Process of probe BRI 67 V. Conclusions 70 References 71

    [1] M. Fernandex-Suarez, A.Y. Ting, Fluorescent probes for super-resolution imaging in living cells, Nat. Rev., 9, 929-943, 2008.
    [2] C Yin, F. Huo, J. Zhang, R. Martínez-Máñez, Y. Yang, H. Lv, and S. Li, Thiol-addition reactions and their applications in thiol recognition, Chem. Soc. Rev., 42, 6032-6059, 2013.
    [3] F. Tanaka, N. Mase and C. F. Barbas III, Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde, Chem. Commun.,1762–1763, 2004.
    [4] S. Das, M. Dutta and D. Das, Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects, Anal. Methods, 5, 6262-6285, 2013.
    [5] A. Prasanna de Silva, Thomas S. Moody and Glenn D. Wright, Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools, Analyst, 134, 2385-2393, 2009.
    [6] Meng X. M, Wang S. X, Zhu M.Z, Quinoline-Based Fluorescence Sensors, Molecular photochemistry – Various aspects, 2012.
    [7] B. Valeur, Molecular Fluorescence: Princeples and applications, 2002.
    [8] N. Kumar, V. Bhalla and M. Kumar, Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions, Analyst, 139, 543-558, 2014.
    [9] Z. Zhou, M. Yu, H. Yang, K. Huang, F. Li, T. Yi and C. Huang, FRET-based sensor for imaging chromium(III) in living cells, Chem. Commun., 3387-3389, 2008.
    [10] M. Kumar, N.Kumar, V. Bhalla, P. R. Sharma and T. Kaur, Naphthalimide Appended Rhodamine Derivative: Through Bond Energy Transfer for Sensing of Hg2+ Ions, Org. Lett., 13, 1422-1425, 2011.
    [11] H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev., 37, 1465-1472, 2008.
    [12] V. Dujols, F. Ford and A. W. Czarnik, A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water, J. Am. Chem. Soc., 119, 7386-7387, 1997.
    [13] B. Rathinam, C. C. Chien, B. C. Chen, J. H. Liu, Fluorogenic and chromogenic detection of Cu2+ and Fe3+ species in aqueous media by rhodamineetriazole conjugate, Tetrahedron, 69, 253-241, 2013.
    [14] 張文益,「三腳共軛型Pyrryl-Rhodamine化學感測器設計及鋅離子感測應用研究」,國立成功大學化學工程學系研究所碩士論文,2015。
    [15] M. E. Jun, and K. H. Ahn, Fluorogenic and Chromogenic Detection of Palladium Species through a Catalytic Conversion of a Rhodamine B Derivative, Org. Lett., 12, 2790-2793, 2010.
    [16] R. M. Yusop, A. Unciti-Broceta, E. M. V. Johansson, R. M. Sánchez-Martín, and M. Bradley, Palladium-mediated intracellular chemistry, Nat. Chem., 3, 239-243, 2011.
    [17] M. Pal, K. Parasuraman, and K. R. Yeleswarapu, Palladium-Catalyzed Cleavage of O/N-Propargyl Protecting Groups in Aqueous Media under a Copper-Free Condition, Org. Lett., 5, 349-352, 2002.
    [18] M. Santra, S. K. Ko, I. Shin, and K. H. Ahn, Fluorescent detection of palladium species with an O-propargylated fluorescein, Chem. Commun., 46, 3464-3699, 2010.
    [19] R. Balamurugan, C. C. Chien, K. M. Wu, Y. H. Chiu, and J. H. Liu, A depropargylation-triggered fluorescence “turn-on” probe for the detection of Pd2+ based on a bispropargylamine–rhodamine conjugate, Analyst, 138, 1564-1569, 2013.
    [20] H. Li, J. Fan, J. Du, K. Guo, S. Sun, X. Liu, and X. Peng, A fluorescent and colorimetric probe specific for palladium detection, Chem. Commun., 46, 1079-1081, 2010.
    [21] H. Li, J. Cao, H. Zhu, J. Fan, and X. Peng, Optical Pd2+ sensing by rhodamine hydrazone ligands: different stoichiometries in aqueous/nonaqueous environments, Tetra. Lett., 54, 4357-4361, 2013.
    [22] H. Li, J. Fan, F. Song, H. Zhu, J. Du, S. Sun, and X. Peng, Fluorescent Probes for Pd2+ Detection by Allylidene–Hydrazone Ligands with Excellent Selectivity and Large Fluorescence Enhancement, Chem. Eur. J., 16, 12349-12356, 2010.
    [23] J. Cui, D. P. Li, S. L. Shen, J. T. Liu, and B. X. Zhao, A simple and effective fluorescent probe based on rhodamine B for determining Pd2+ ions in aqueous solution, RSC Adv., 5, 3875-3880, 2015.
    [24] H. Kim, K. S. Moon, S. Shim, and J. Tae, Cyclen-Conjugated Rhodamine Hydroxamate as Pd2+-Specific Fluorescent Chemosensor, Chem. Asian J., 6, 1987-1991, 2011.
    [25] S. Goswami, D. Sen, N. K. Das, H. K. Fun, and C. K. Quah, A new rhodamine based colorimetric “off-on” fluorescence sensor selective for Pd2+ along with the first bound X-ray crystal structure, Chem. Commun., 47, 9101-9103, 2011.
    [26] H. Li, J. Fan, M. Hu, G. Cheng, D. Zhou, T. Wu, F. Song, S. Sun, C. Duan, and X. Peng, Highly Sensitive and Fast-Responsive Fluorescent Chemosensor for Palladium: Reversible Sensing and Visible Recovery, Chem. Eur. J., 18, 12242-12250, 2012.
    [27] B. Crociani, S. Antonaroli, M. Burattini, P. Paoli, and P. Rossi, Palladium complexes with a tridentate PNO ligand. Synthesis of η1-allyl complexes and cross-coupling reactions promoted by boron compounds, Dalton Trans., 39, 3665-3672, 2010.
    [28] S. Cai, Y. Lu, S. He, F. Wei, L. Zhao, and X. Zeng, A highly sensitive and selective turn-on fluorescent chemosensor for palladium based on a phosphine-rhodamine conjugate, Chem. Commun., 49, 822-824, 2013.
    [29] L. Duan, Y. Xu, and X. Qian, Highly sensitive and selective Pd2+ sensor of naphthalimide derivative based on complexation with alkynes and thio-heterocycle, Chem. Commun., 47, 6339-6341, 2008.
    [30] M. Wang, X. Liu, H. Lu, H. Wang, and Z. Qin, Highly Selective and Reversible Chemosensor for Pd2+ Detected by Fluorescence, Colorimetry, and Test Paper, ACS Appl. Mater. Interfaces, 7, 1284-1289, 2015.
    [31] L. Xu, Y. Xu, W Zhu, B. Zeng, C. Yang, B. Wu, and X. Qian, Versatile trifunctional chemosensor of rhodamine derivative for Zn2+, Cu2+, and His/Cys in aqueous solution and living cells, Org. Biomol. Chem., 9, 8284-8287, 2011.
    [32] H. Li, J. Fan, and X. Peng, Colorimetric and fluorescent probes for the optical detection of palladium ions, Chem. Soc. Rev., 42, 7943-7962, 2013.
    [33] L. M. Hyman, and L. J. Franz, Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols, Coord. Chem. Rev., 256, 2333-2356, 2012.
    [34] A. K. Mahapatra, S. K. Manna, D. Mandal, and C. D. Mukhopadhyay, Highly Sensitive and Selective Rhodamine-Based “Off-On” Reversible Chemosensor for Tin (Sn4+) and Imaging in Living Cells, Inorg. Chem., 52, 10825-10834, 2013.
    [35] A. K. Mahapatra, S. K. Manna, K. Maiti, S. Mondal, R. Maji, D. Mandal, S. Mandal, M. R. Uddin, S. Goswami, C. K. Quah, and H. K. Fun, An azodye-rhodamine-based fluorescent and colorimetric probe specific for the detection of Pd2+ in aqueous ethanolic solution: synthesis, XRD characterization, computational studies and imaging in live cells, Analyst, 140, 1229-1236, 2015.
    [36] V. K. Gupta, N. Mergu, and L. K. Kumawat, A new multifunctional rhodamine-derived probe for colorimetric sensing of Cu(II) and Al(III) and fluorometric sensing of Fe(III) in aqueous media, Sens. Actuators B, 223, 101-113, 2016.
    [37] H. Li, H. Guan, X. Duan, J. Hu, G. Wang, and Q. Wang, An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam, Org. Biomol. Chem., 11, 1805-1809, 2013.
    [38] Arbeloa F. L., Ojeda P. R., Arbeloa I. L., Florescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions. Jornal of Luminescence, 44, 105-112, 1989.
    [39] J. Panchompoo, L. Aldous, M. Baker, M. I. Wallace and R. G. Compton, One-step synthesis of fluorescein modified nano-carbon for Pd(II) detection via fluorescence quenching, Analyst, 137, 2054-2062, 2012.
    [40] J. Jiang, H. Jiang, W. Liu, X. Tang, X. Zhou, W. Liu, and R. Liu, A Colorimetric and Ratiometric Fluorescent Probe for Palladium, Org. Lett., 13, 4922-4925, 2011.
    [41] M. H. Lee, T, V. Giap, S. H. Kim, Y. H. Lee, C. Kang, and J. S. Kim, A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base, Chem. Commun., 46, 1407-1409, 2010.
    [42] 楊迎晛,「Rhodamine-CD 化學感測器設計以及水中鈀離子螢光法以及比色法的感測應用研究」,國立成功大學化學工程學系研究所碩士論文,2014。

    下載圖示 校內:2017-07-31公開
    校外:2017-07-31公開
    QR CODE