簡易檢索 / 詳目顯示

研究生: 邱顯烈
Chiou, Shian-Lie
論文名稱: 以溶膠-凝膠法製備Epoxy/SiO2奈米複合材及其在高透光性光電元件封裝之應用研究
Preparation of Epoxy/SiO2 hybrid materials by Sol-Gel method and adopting as high penetrability opto-electronic molding compounds
指導教授: 鍾賢龍
Chung, Shian-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 139
中文關鍵詞: 奈米複合材料溶膠-凝膠法
外文關鍵詞: Sol-Gel method, nanocomposite
相關次數: 點閱:277下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      本研究旨在利用溶膠-凝膠法製備Epoxy/SiO2有機-無機奈米複合材料及其在高透光性光電元件封裝之應用,在製備奈米複合材料時必須將環氧樹脂以偶合劑做適當的改質,使得有機相和無機相間具備有共價鍵,如此對於奈米複合材料機械、熱性質的提升將更有幫助。研究中改變不同的參數:PH值與觸媒種類、溫度、溶劑、固含量、中和與二氧化矽來源,並討論各個參數對複合材料的影響。利用熱重分析儀(TGA)分析材料的熱性質,紫外線-可見光光譜儀(UV-VIS)分析材料在可見光範圍內的透光性並在JEDEC吸濕規範Level 1 下測定抗濕性。

      研究結果顯示,使用的觸媒會與環氧樹脂產生開環的反應並使材料之性質劣化。中和的步驟所產生的二氧化矽析出行為與提高反應溫度會造成二氧化矽的聚集都會使透光性下降並降低材料的抗濕性。改變固含量,二氧化矽含量越低透光性越好但是二氧化矽含量越高則會有較好的熱性質與抗濕性。以丙酮取代Tetrahydrofuran (THF)當作溶劑則會使反應不完全產生凝膠化的現象造成材料的均勻性降低使材料之透光性與熱性質均有下降的趨勢。最後以具有環氧基團的3-Glycidoxypropyl- trimethoxysilane (GPTMS)取代部分Tetraethoxysilane (TEOS)可以得到最佳之熱性質、熱機械性質、抗濕性與透光性.

    Abstract
     The sol-gel technology was used to prepare organic/inorganic nanocomposites. In order to improve the compability between the organic and inorganic phases, coupling agent was used to modify the DGEBA type epoxy. Applying the sol-gel technique, the silica could be successfully incorparated into the network of hybrids. It will lead to the increasing of the thermal stability and mechanical property; The effects of pH values, kinds of catalyst, temperature, silica content, the source of silica and neutralization in the process were investigated. TGA were used to test thermal property. UV-VIS were used to test penetrability in the range of visible light wavelength. Resist humidity of nanocomposites were tested in JEDEC Level 1 moisture soak.

     The results show that, ring-opening reaction of catalyst and epoxy result in degradation of nanocomposites properties. By operating at neutralization and high temperature , aggregation and condensation of silica makes inferior penetrability. By changing silica content, low silica content had a better penetrability than high silica content, but high silica content can achieve a better thermal property and resist humidity. While Tetrahydrofuran (THF) was being substituted for Aceton, hybrid material was badly mixed because of incomplete reation and gelation. Finally, using 3-Glycidoxypropyl- trimethoxysilane(GPTMS) with epoxide group to replace a part of Tetraethoxysilane (TEOS), hybrid materials can achieve a better mechanical property,improve thermal stability,resist humidity and better penetrability can be improved.

    總目錄 中文摘要 I 英文摘要 II 總目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 01 1-1 研究背景 01 1-2 研究目的 02 第二章 文獻回顧 04 2-1-1奈米複合材料 04 2-1-2奈米複合材料的製備方法 06 2-2-1 環氧樹脂 07 2-2-2 環氧樹脂之硬化 08 2-2-3 LED封裝 10 2-3-1 溶膠-凝膠法 13 2-3-2溶膠-凝膠法於混成材料之研究現況 14 2-3-3溶膠-凝膠法反應機制 15 2-3-4溶膠-凝膠法之控制變因 17 第三章 實驗設備與步驟 23 3-1 藥品與儀器 23 3-1-1 藥品 23 3-1-2 儀器 24 3-2 實驗步驟 26 3-2-1 Part 1: Epoxy接枝改質 26 3-2-2 Part 2:以溶膠-凝膠法生成二氧化矽微粒 27 3-2-3 Part 3:混成材料烘乾與硬化 28 3-2-4樣品命名 29 3-3 結構與物性分析 31 第四章 結果與討論 35 4-1 環氧樹脂的接枝改質 35 4-1-1 FT-IR鑑定分析 35 4-2 PH值與觸媒種類效應 36 4-2-1觸媒的開環現象 36 4-2-2粒徑分析 37 4-2-3黏度變化 38 4-2-4光學性質分析 39 4-2-5熱性質分析 40 4-2-6溼氣阻抗分析 41 4-2-7熱機械性質分析 42 4-2-8表面微觀型態性質分析 43 4-2-9二氧化矽結構分析 43 4-3溫度效應 45 4-4溶劑效應 47 4-5固含量的影響 48 4-6中和效應 50 4-7改變不同二氧化矽來源 52 4-8環氧樹脂有無改質的影響 55 第五章 結論 134 參考文獻 136

    參考文獻
    1. M. Chaturvedi, Y. L. Shen, Acta materialia ,46,4287(1998)
    2. 謝添壽,工業材料,第193期, 153(2003)
    3. Y. L. Liu, C. P. Chen , R. J. Jeng, J. Applied Polymer Science,90,4047
    4. X. Huang, S. Lewis, W. J.Brittain, R.A. Vaia, Macromolecules, 33, 2000(2000)
    5. L. Tie, D. K. Padmananda, J. P. Thomas ,Chemistry of Materials, 7,2144(1995)
    6. L. Tie, D. K. Padmananda, J. P. Thomas ,Chemistry of Materials, 6,573(1994)
    7. 李世陽,工業材料,第182 期,p95 (2002)
    8. 馬振基、張文吉,塑膠資訊,第67 期,p45~46 (2002)
    9. P. C. Chiang, W. T. Whang, Polymer,44,2249(2003)
    10. P. L. Duifhuis, J. M. H. Janssen, Plastics, Additives and Compounding ,3,14(2001)
    11. 林唯芳,有機無機奈米材料,塑膠資訊,第60 期,p4 (2001)
    12. 廖建勳,納米高分子複合材料,工業材料,第125 期,p110 (1997)
    13. A.Okada, A. Usuki, Materials Science and Engineering : C ,3,109 (1992)
    14. W. Jia, E. Segal, D. Kornemandel, Y. Lamhot, M. Narkis, A. Siegmann, Synthetic Metals,128,115(2002)
    15. D. R. Yei, S. W. Kuo, Y. C. Su, F.C. Chang, Polymer,45, 2633 (2004)
    16. K. M. Kim, K. Adachi, Y. Chujo, Polymer,43,1171(2002)
    17. Z. Ahmad, M. I. Sarwar, S. Wang, J. E. Mark, Polymer, 38, 4523 (1997)
    18. M. I. Sarwar, Z. Ahmad, European Polymer Journal,36,89(2000)
    19. J. J. W. M Rosink, M. A. Blauw, L. J. Geerligs, E. Van der Drift, B. A. C. Rousseeuw and S. Radelaar, Optical Materials,9,416(1998)
    20. S. Trohalaki, Polmer,37,1841(1996)
    21. G. Parker, M. Hara, Polymer,38,2701(1997)
    22. F. K. Liu, S. Y. Hsieh, F. H. Ko, T. C. Chu, Colloids and Surfaces A: Physicochemical and Engineering Aspect,231,31(2003)
    23. P. Lijia, C. Dazhu, H. Pingsheng, Z. Xiao, W. Lvqian, Materials Research Bulletin,39,243(2004)
    24. A. Stanculescu, L. Tugulea, H. V. Alexandru, F. Stanculescu, M. Socol, J. Crystal Growth,275,1779(2005)
    25. K. Matsukawa, K. Hasegawa, J. polymer science PartA, 30, 2045 (1992)
    26. S. S. Lee, S. C. Kim, J. applied Polymer Science,69, 1291 (1998)
    27. 工研院經資中心ITIS計畫,2001/4
    28. 陳凱琪,黃淑禎,李巡天,工業材料,第187期,p 112(2002)
    29. C. J. Brinker, G. W. Scherer, Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing, Academic Press ,1990
    30. J. P. Chen, W. S. Lin, Enzyme and Microbial Technology,32, 801(2003)
    31. G. P. Kalaignan, D. J. Seo, S. B. Park, Materials Chemistry and Physics,85,286(2004)
    32. Q. F. Zhou, H. L. Chan, C. L. Choy, J. Materials Processing Technology,63,281(1997)
    33. N. N. Ghosh, P. Pramanik, Nanostructured Materials,8,1041 (1997)
    34. R. K. Nagarale, V. K. Shahi, R. Rangarajan, J. Membrane Science, 248,37(2005)
    35. B. H. Winkler, R. E. Baltus, J. Membrane Science,226,75(2003)
    36. F. Tian, G. Zhu, Sensors and Actuators B: Chemical,86,266 (2002)
    37. B. J. Skutnik, M. R. Trumbull, J. Non-Crystalline Solids,239,210 (1998)
    38. D. Y. Wang, K. Li, H. L. W. Chan, Sensors and Actuators A: Physical,114,1(2004)
    39. A. M. Siouffi, J. Chromatography A,1000,801(2003)
    40. M. Opallo , J. Kukulka-Walkiewicz, Electrochimica Acta , 46, 4235 (2001)
    41. D. R. Uhlmann, T. Suratwala, K. Davidson,J. M. Boulton, G. Teowee, J. Non-Crystalline Solids,218,113(1997)
    42. M. Sato, E. B. Slamovich, T. J. Webster, Biomaterials,26,1349 (2005)
    43. 馬振基,江金龍,關旭強,吳岱霖,張文吉,工業材料,第185期,p 142(2002)
    44. I. Honma, S. Nomura, H. Nakajima, J. Membrane Science, 185, 93(2001)
    45. K. M. Kim, K. Adachi, Y. Chujo,Polymer,43,1171(2002)
    46. J. H. Kim, Y. M. Lee, J. Membrane Science ,193,209(2001)
    47. C. Joly , S. Goizet, J. C. Schrotter, J. Sanchez, M. Escoubes, J. Membrane Science,130,63(1997)
    48. K. F. Silveira, I. V. P.Yoshida, S. P. Nunes, Polymer,36,1425(1995)
    49. L. Dewimille, B. Bresson, L. Bokobza, Polymer,46,4135 (2005)
    50. M. Ochi, R. Takahashi, J. polymer Science Part B:Polymer Physics, 39 , 1071(2001)
    51. L. Matejka, K. Dusek, J. Plestil, J. Kriz, F. Lednicky , Polymer, 40, 171(1998)
    52. 陳永志,陳姿秀,工業材料,183,115(2002)
    53. C. J .Brinker, J. Non-Crystalline Solids,100,31(1988)
    54. B. Himmel, T. Gerber, H. Burger, J. Non-Crystalline Solids, 91, 122(1987)
    55. C. J. Brinker, G. W. Scherer, Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing, Academic Press ,1990 .
    56. R. K. Iler, The Chemistry of Silica, New York, 1979
    57. 王惠君,以回應曲面法探討溶膠-凝膠法製備奈米二氧化矽之參數影響(2004)
    58. Effect of long and short Pb-free soldering profiles of IPC/JEDEC J-STD-020 on plastic SMD packages, Microelectronics Reliability, 44,1293(2004)
    59. D. W. Sindorf, G. E. Maciel, J. American Chemical Society,105, 3767 (1983)
    60. L. Kellberg, P. Zeuthen, H. J. Jakobsen, J. Catalysis,143,45,1993
    61. G. E. Maciel, D. W. Sindorf, J. American Chemical Society,102, 7607 (1980)

    下載圖示 校內:立即公開
    校外:2005-08-16公開
    QR CODE