| 研究生: |
范林茹瓊 Phan, Nhu-Quynh Lam |
|---|---|
| 論文名稱: |
利用表面結構選擇性與銀離子調控自組裝法製作層狀卟啉奈米陣列結構 Three-Dimensional, Layered Porphyrin Nanoarrays Fabricated Using Stepwise Silver-Mediated Porphyrin Assembly Process Combined with Surface Selectivity |
| 指導教授: |
李介仁
Li, Jie-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 納米球光刻 、自組裝單層 、有機矽烷 、表面化學 、原子力顯微鏡 |
| 外文關鍵詞: | nanosphere lithography, self-assembly monolayer (SAM), organosilane, surface chemistry, AFM |
| 相關次數: | 點閱:553 下載:151 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
通過施加溶液在矽表面上構建由 5,10,15,20-四(4-吡啶基)-21H,23H-卟啉(TPyP)分子和銀離子金屬連接體組成的層狀結構銀離子-卟啉納米膜基於逐層增長的方法。銀介導的卟啉層狀結構組裝在通過納米球光刻與有機矽烷自組裝技術製備的有機矽烷納米孔內。使用兩種類型的有機矽烷分子來形成自組裝單層。此外,有四種類型的有機矽烷分子用於功能化有機矽烷納米孔。採用原子力顯微鏡 (AFM)、掃描電子顯微鏡 (SEM) 和紫外-可見光譜測量來檢查納米膜的特性。結果很好地證明了生產有機矽烷自組裝單層的簡便策略。此外,有機矽烷納米孔薄膜可用於表面選擇性應用。最後,還介紹了一種簡單的製備方法來製備銀介導的卟啉層結構納米膜,這對於金屬有機框架在納米器件中的潛在應用的未來使用至關重要。
Layer-structured silver ion-porphyrin nanofilms consisting of 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP) molecules, and silver ion metal linkers were constructed on a silicon surface by applying a solution-based layer-by-layer growth approach. The silver-mediated porphyrin layered structure was assembled inside the organosilane nanoholes prepared by nanosphere lithography coupled with the organosilane self-assembly technique. Two types of organosilane molecules were utilized to form the self-assembled monolayers. Besides, there are four types of organosilane molecules that were used to functionalize the organosilane nanopores. atomic force microscopy (AFM), scanning electron microscopy (SEM) and UV-Visible spectroscopy measurements were employed to examine the nanofilm characteristics. The results provide an excellent demonstration of a facile strategy to produce organosilane self-assembled monolayers. Furthermore, the organosilane nanohole thin films can be employed for surface selectivity applications. Lastly, an easy fabrication method to prepare silver-mediated porphyrin layer-structured nanofilm was also introduced, which is crucial for the future use of metal-organic frameworks in potential applications in nanodevices.
(1) Zhang, J.; Yang, B. Patterning Colloidal Crystals and Nanostructure Arrays by Soft Lithography. Advanced Functional Materials 2010, 20 (20), 3411.
(2) Nie, Z.; Kumacheva, E. Patterning surfaces with functional polymers. Nature Materials 2008, 7 (4), 277.
(3) Arpin, K. A.; Mihi, A.; Johnson, H. T.; Baca, A. J.; Rogers, J. A.; Lewis, J. A.; Braun, P. V. Multidimensional architectures for functional optical devices. Adv Mater 2010, 22 (10), 1084.
(4) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292 (5523), 1897.
(5) Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. A New Generation of Sensors Based on Extraordinary Optical Transmission. Accounts of Chemical Research 2008, 41 (8), 1049.
(6) Shipway, A. N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000, 1 (1), 18.
(7) Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D. Photonic crystals; Princeton university press, 2011.
(8) Ostuni, E.; Chen, C. S.; Ingber, D. E.; Whitesides, G. M. Selective deposition of proteins and cells in arrays of microwells. Langmuir 2001, 17 (9), 2828.
(9) Wallraff, G.; Hinsberg, W. Lithographic imaging techniques for the formation of nanoscopic features. Chemical Reviews 1999, 99 (7), 1801.
(10) Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 1996, 272 (5258), 85.
(11) Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. New approaches to nanofabrication: molding, printing, and other techniques. Chemical reviews 2005, 105 (4), 1171.
(12) Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. " Dip-pen" nanolithography. science 1999, 283 (5402), 661.
(13) Krämer, S.; Fuierer, R. R.; Gorman, C. B. Scanning probe lithography using self-assembled monolayers. Chemical Reviews 2003, 103 (11), 4367.
(14) Geissler, M.; Xia, Y. Patterning: Principles and some new developments. Advanced Materials 2004, 16 (15), 1249.
(15) Yi, D. K.; Seo, E.-M.; Kim, D.-Y. Surface-modulation-controlled three-dimensional colloidal crystals. Applied Physics Letters 2002, 80 (2), 225.
(16) Denkov, N.; Velev, O.; Kralchevski, P.; Ivanov, I.; Yoshimura, H.; Nagayama, K. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 1992, 8 (12), 3183.
(17) Kralchevsky, P. A.; Nagayama, K. Capillary forces between colloidal particles. Langmuir 1994, 10 (1), 23.
(18) Braun, P. V.; Wiltzius, P. Electrochemically grown photonic crystals. Nature 1999, 402 (6762), 603.
(19) Velev, O. D.; Lenhoff, A. M.; Kaler, E. W. A class of microstructured particles through colloidal crystallization. Science 2000, 287 (5461), 2240.
(20) Tessier, P. M.; Velev, O. D.; Kalambur, A. T.; Lenhoff, A. M.; Rabolt, J. F.; Kaler, E. W. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Advanced Materials 2001, 13 (6), 396.
(21) Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295 (5564), 2418.
(22) Park, S. H.; Qin, D.; Xia, Y. Crystallization of mesoscale particles over large areas. Advanced Materials 1998, 10 (13), 1028.
(23) Lu, Y.; Yin, Y.; Xia, Y. A Self‐Assembly Approach to the Fabrication of Patterned, Two‐Dimensional Arrays of Microlenses of Organic Polymers. Advanced materials 2001, 13 (1), 34.
(24) Tan, B.-Y.; Sow, C.-H.; Lim, K.-Y.; Cheong, F.-C.; Chong, G.-L.; Wee, A.-S.; Ong, C.-K. Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles. The Journal of Physical Chemistry B 2004, 108 (48), 18575.
(25) Zhang, J.; Li, Y.; Zhang, X.; Yang, B. Colloidal self‐assembly meets nanofabrication: From two‐dimensional colloidal crystals to nanostructure arrays. Advanced materials 2010, 22 (38), 4249.
(26) Cong, H.; Cao, W. Array patterns of binary colloidal crystals. The Journal of Physical Chemistry B 2005, 109 (5), 1695.
(27) Choi, D.-G.; Yu, H. K.; Jang, S. G.; Yang, S.-M. Colloidal lithographic nanopatterning via reactive ion etching. Journal of the American Chemical Society 2004, 126 (22), 7019.
(28) Bae, C.; Moon, J.; Shin, H.; Kim, J.; Sung, M. M. Fabrication of monodisperse asymmetric colloidal clusters by using contact area lithography (CAL). Journal of the American Chemical Society 2007, 129 (46), 14232.
(29) Ulman, A. Formation and structure of self-assembled monolayers. Chemical reviews 1996, 96 (4), 1533.
(30) Hahn, C. D.; Leitner, C.; Weinbrenner, T.; Schlapak, R.; Tinazli, A.; Tampé, R.; Lackner, B.; Steindl, C.; Hinterdorfer, P.; Gruber, H. J. Self-assembled monolayers with latent aldehydes for protein immobilization. Bioconjugate chemistry 2007, 18 (1), 247.
(31) Koyano, T.; Saito, M.; Miyamoto, Y.; Kaifu, K.; Kato, M. Development of a technique for microimmobilization of proteins on silicon wafers by a streptavidin− biotin reaction. Biotechnology progress 1996, 12 (1), 141.
(32) Mooney, J.; Hunt, A.; McIntosh, J.; Liberko, C.; Walba, D.; Rogers, C. Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proceedings of the National Academy of Sciences 1996, 93 (22), 12287.
(33) Zhang, G. J.; Tanii, T.; Zako, T.; Hosaka, T.; Miyake, T.; Kanari, Y.; Funatsu, T.; Ohdomari, I. Nanoscale patterning of protein using electron beam lithography of organosilane self‐assembled monolayers. Small 2005, 1 (8‐9), 833.
(34) Chen, S.; Zheng, J.; Li, L.; Jiang, S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society 2005, 127 (41), 14473.
(35) Huang, T. T.; Sturgis, J.; Gomez, R.; Geng, T.; Bashir, R.; Bhunia, A. K.; Robinson, J. P.; Ladisch, M. R. Composite surface for blocking bacterial adsorption on protein biochips. Biotechnology and bioengineering 2003, 81 (5), 618.
(36) Boozer, C.; Yu, Q.; Chen, S.; Lee, C.-Y.; Homola, J.; Yee, S. S.; Jiang, S. Surface functionalization for self-referencing surface plasmon resonance (SPR) biosensors by multi-step self-assembly. Sensors and Actuators B: Chemical 2003, 90 (1-3), 22.
(37) Lorenz, C. D.; Lane, J. M. D.; Chandross, M.; Stevens, M. J.; Grest, G. S. Molecular dynamics simulations of water confined between matched pairs of hydrophobic and hydrophilic self-assembled monolayers. Langmuir 2009, 25 (8), 4535.
(38) Ducloux, O.; Galopin, E.; Zoueshtiagh, F.; Merlen, A.; Thomy, V. Enhancement of biosensing performance in a droplet-based bioreactor by in situ microstreaming. Biomicrofluidics 2010, 4 (1), 011102.
(39) Wink, T.; Van Zuilen, S.; Bult, A.; Van Bennekom, W. Self-assembled monolayers for biosensors. Analyst 1997, 122 (4), 43R.
(40) Chaki, N. K.; Vijayamohanan, K. Self-assembled monolayers as a tunable platform for biosensor applications. Biosensors and Bioelectronics 2002, 17 (1-2), 1.
(41) Gurard-Levin, Z. A.; Mrksich, M. Combining self-assembled monolayers and mass spectrometry for applications in biochips. Annu. Rev. Anal. Chem. 2008, 1, 767.
(42) Zhang, Y.; Yu, H.; Qin, J.; Lin, B. A microfluidic DNA computing processor for gene expression analysis and gene drug synthesis. Biomicrofluidics 2009, 3 (4), 044105.
(43) Garg, N.; Mohanty, A.; Lazarus, N.; Schultz, L.; Rozzi, T. R.; Santhanam, S.; Weiss, L.; Snyder, J. L.; Fedder, G. K.; Jin, R. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors. Nanotechnology 2010, 21 (40), 405501.
(44) Matsubara, I.; Hosono, K.; Murayama, N.; Shin, W.; Izu, N. Organically hybridized SnO2 gas sensors. Sensors and Actuators B: Chemical 2005, 108 (1-2), 143.
(45) Wang, B.; Haick, H. Effect of functional groups on the sensing properties of silicon nanowires toward volatile compounds. ACS applied materials & interfaces 2013, 5 (6), 2289.
(46) Cecchetto, L.; Denoyelle, A.; Delabouglise, D.; Petit, J.-P. A silane pre-treatment for improving corrosion resistance performances of emeraldine base-coated aluminium samples in neutral environment. Applied Surface Science 2008, 254 (6), 1736.
(47) Pujari, S. P.; Scheres, L.; Marcelis, A. T.; Zuilhof, H. Covalent surface modification of oxide surfaces. Angewandte Chemie International Edition 2014, 53 (25), 6322.
(48) Ruckenstein, E.; Li, Z. Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Advances in Colloid and Interface Science 2005, 113 (1), 43.
(49) Toworfe, G.; Composto, R.; Shapiro, I.; Ducheyne, P. Nucleation and growth of calcium phosphate on amine-, carboxyl-and hydroxyl-silane self-assembled monolayers. Biomaterials 2006, 27 (4), 631.
(50) Singh, J.; Whitten, J. E. Adsorption of 3-mercaptopropyltrimethoxysilane on silicon oxide surfaces and adsorbate interaction with thermally deposited gold. The Journal of Physical Chemistry C 2008, 112 (48), 19088.
(51) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews 2005, 105 (4), 1103.
(52) Senaratne, W.; Andruzzi, L.; Ober, C. K. Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules 2005, 6 (5), 2427.
(53) Sung, M. M.; Kim, Y. S. Self-assembled monolayers of alkanethiols on clean copper surfaces. Bulletin of the Korean Chemical Society 2001, 22 (7), 748.
(54) Adamkiewicz, M., University of St Andrews, 2013.
(55) Kondo, T.; Yamada, R.; Uosaki, K.; Wiley-VCH, Weinheim, 2013.
(56) Förch, R.; Schönherr, H.; Jenkins, A. T. A. Surface design: applications in bioscience and nanotechnology; John Wiley & Sons, 2009.
(57) Vericat, C.; Vela, M.; Benitez, G.; Carro, P.; Salvarezza, R. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chemical Society Reviews 2010, 39 (5), 1805.
(58) Häkkinen, H. The gold–sulfur interface at the nanoscale. Nature chemistry 2012, 4 (6), 443.
(59) Herzer, N.; Hoeppener, S.; Schubert, U. S. Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chemical Communications 2010, 46 (31), 5634.
(60) Glass, N. R.; Tjeung, R.; Chan, P.; Yeo, L. Y.; Friend, J. R. Organosilane deposition for microfluidic applications. Biomicrofluidics 2011, 5 (3), 036501.
(61) Fryxell, G. E.; Mattigod, S. V.; Lin, Y.; Wu, H.; Fiskum, S.; Parker, K.; Zheng, F.; Yantasee, W.; Zemanian, T. S.; Addleman, R. S. Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): The importance of ligand posture in functional nanomaterials. Journal of Materials Chemistry 2007, 17 (28), 2863.
(62) Lei, Z.; Zhang, Y.; Wang, H.; Ke, Y.; Li, J.; Li, F.; Xing, J. Fabrication of well-ordered macroporous active carbon with a microporous framework. Journal of Materials Chemistry 2001, 11 (8), 1975.
(63) Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters 1987, 58 (20), 2059.
(64) Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Monodispersed colloidal spheres: old materials with new applications. Advanced Materials 2000, 12 (10), 693.
(65) Soukoulis, C. M. Photonic band gap materials; Springer Science & Business Media, 2012.
(66) Velev, O. D.; Kaler, E. W. Structured porous materials via colloidal crystal templating: from inorganic oxides to metals. Advanced Materials 2000, 12 (7), 531.
(67) Liu, L.; Zhang, Y.; Wang, W.; Gu, C.; Bai, X.; Wang, E. Nanosphere Lithography for the Fabrication of Ultranarrow Graphene Nanoribbons and On‐Chip Bandgap Tuning of Graphene. Advanced Materials 2011, 23 (10), 1246.
(68) Hulteen, J. C.; Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1995, 13 (3), 1553.
(69) Zhang, X.; Whitney, A. V.; Zhao, J.; Hicks, E. M.; Van Duyne, R. P. Advances in contemporary nanosphere lithographic techniques. Journal of Nanoscience and Nanotechnology 2006, 6 (7), 1920.
(70) Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin, I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998, 282 (5390), 897.
(71) Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondia, J. P. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000, 405 (6785), 437.
(72) Isa, L.; Kumar, K.; Muller, M.; Grolig, J.; Textor, M.; Reimhult, E. Particle lithography from colloidal self-assembly at liquid− liquid interfaces. ACS nano 2010, 4 (10), 5665.
(73) Li, J.-R.; Lusker, K. L.; Yu, J.-J.; Garno, J. C. Engineering the spatial selectivity of surfaces at the nanoscale using particle lithography combined with vapor deposition of organosilanes. ACS nano 2009, 3 (7), 2023.
(74) Jiang, P.; Cizeron, J.; Bertone, J. F.; Colvin, V. L. Preparation of macroporous metal films from colloidal crystals. Journal of the American Chemical Society 1999, 121 (34), 7957.
(75) Yan, H.; Blanford, C. F.; Holland, B. T.; Smyrl, W. H.; Stein, A. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chemistry of Materials 2000, 12 (4), 1134.
(76) Kim, M. H.; Choi, J. Y.; Choi, H. K.; Yoon, S. M.; Park, O. O.; Yi, D. K.; Choi, S. J.; Shin, H. J. Carbon Nanotube Network Structuring Using Two‐Dimensional Colloidal Crystal Templates. Advanced Materials 2008, 20 (3), 457.
(77) Huang, Z.; Carnahan, D.; Rybczynski, J.; Giersig, M.; Sennett, M.; Wang, D.; Wen, J.; Kempa, K.; Ren, Z. Growth of large periodic arrays of carbon nanotubes. Applied Physics Letters 2003, 82 (3), 460.
(78) Jiye, A.; Trygg, J.; Gullberg, J.; Johansson, A. I.; Jonsson, P. r.; Antti, H.; Marklund, S. L.; Moritz, T. Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical chemistry 2005, 77 (24), 8086.
(79) Kim, S. B.; Lee, W. W.; Yi, J.; Park, W. I.; Kim, J.-S.; Nichols, W. T. Simple, large-scale patterning of hydrophobic ZnO nanorod arrays. ACS applied materials & interfaces 2012, 4 (8), 3910.
(80) Englade-Franklin, L. E.; Morrison, G.; Verberne-Sutton, S. D.; Francis, A. L.; Chan, J. Y.; Garno, J. C. Surface-directed synthesis of erbium-doped yttrium oxide nanoparticles within organosilane zeptoliter containers. ACS applied materials & interfaces 2014, 6 (18), 15942.
(81) Lusker, K. L.; Li, J.-R.; Garno, J. C. Nanostructures of functionalized gold nanoparticles prepared by particle lithography with organosilanes. Langmuir 2011, 27 (21), 13269.
(82) Chambers, P. C.; Kuruppu Arachchige, N. M.; Taylor, A. M.; Garno, J. C. Surface Coupling of Octaethylporphyrin with Silicon Tetrachloride. ACS omega 2019, 4 (2), 2565.
(83) Chambers, P. C.; Garno, J. C. Heterostuctures of 4-(chloromethyl) phenyltrichlorosilane and 5, 10, 15, 20-tetra (4-pyridyl)-21H, 23H-porphine prepared on Si (111) using particle lithography: Nanoscale characterization of the main steps of nanopatterning. Beilstein journal of nanotechnology 2018, 9 (1), 1211.
(84) Zhai, X.; Alexander, D.; Derosa, P.; Garno, J. C. Distance-dependent measurements of the conductance of porphyrin nanorods studied with conductive probe atomic force microscopy. Langmuir 2017, 33 (5), 1132.
(85) Taylor, Z. R.; Keay, J. C.; Sanchez, E. S.; Johnson, M. B.; Schmidtke, D. W. Independently controlling protein dot size and spacing in particle lithography. Langmuir 2012, 28 (25), 9656.
(86) Singh, G.; Gohri, V.; Pillai, S.; Arpanaei, A.; Foss, M.; Kingshott, P. Large-area protein patterns generated by ordered binary colloidal assemblies as templates. ACS nano 2011, 5 (5), 3542.
(87) Pi, F.; Dillard, P.; Limozin, L.; Charrier, A.; Sengupta, K. Nanometric protein-patch arrays on glass and polydimethylsiloxane for cell adhesion studies. Nano letters 2013, 13 (7), 3372.
(88) Li, J.-R.; Lewandowski, B. R.; Xu, S.; Garno, J. C. Detecting the magnetic response of iron oxide capped organosilane nanostructures using magnetic sample modulation and atomic force microscopy. Analytical chemistry 2009, 81 (12), 4792.
(89) Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Physical review letters 1986, 56 (9), 930.
(90) Marti, O.; Drake, B.; Hansma, P. Atomic force microscopy of liquid‐covered surfaces: Atomic resolution images. Applied Physics Letters 1987, 51 (7), 484.
(91) Cappella, B.; Dietler, G. Force-distance curves by atomic force microscopy. Surface science reports 1999, 34 (1-3), 1.
(92) Marti, O. AFM instrumentation and tips. Handbook of Micro/Nano Tribology 1999, 81.
(93) Daniele, A.; Salapaka, S.; Salapaka, M.; Dahleh, M. Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), 1999, 253.
(94) Alunda, B. O.; Lee, Y. J. Cantilever-based sensors for high speed atomic force microscopy. Sensors 2020, 20 (17), 4784.
(95) Marrese, M.; Guarino, V.; Ambrosio, L. Atomic force microscopy: a powerful tool to address scaffold design in tissue engineering. Journal of functional biomaterials 2017, 8 (1), 7.
(96) Deng, X.; Xiong, F.; Li, X.; Xiang, B.; Li, Z.; Wu, X.; Guo, C.; Li, X.; Li, Y.; Li, G. Application of atomic force microscopy in cancer research. Journal of nanobiotechnology 2018, 16 (1), 1.
(97) Albrecht, T.; Grütter, P.; Horne, D.; Rugar, D. Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. Journal of applied physics 1991, 69 (2), 668.
(98) Li, J.-R.; Garno, J. C. Elucidating the role of surface hydrolysis in preparing organosilane nanostructures via particle lithography. Nano letters 2008, 8 (7), 1916.
(99) Brownfield, A. L.; Causey, C. P.; Mullen, T. J. Influence of solvent on octadecyltrichlorosilane nanostructures fabricated using particle lithography. The Journal of Physical Chemistry C 2015, 119 (22), 12455.
(100) Choi, Y.; Noh, J. Structural effect on formation of alkylsilane self-assembled monolayers on indium tin oxide surface. Molecular Crystals and Liquid Crystals 2008, 492 (1), 165/[529].
(101) Rye, R.; Nelson, G.; Dugger, M. Mechanistic aspects of alkylchlorosilane coupling reactions. Langmuir 1997, 13 (11), 2965.
(102) Kern, W. Cleaning solution based on hydrogen peroxide for use in silicon semiconductor technology. RCA review 1970, 31, 187.
(103) Aswal, D.; Lenfant, S.; Guerin, D.; Yakhmi, J.; Vuillaume, D. Self assembled monolayers on silicon for molecular electronics. Analytica chimica acta 2006, 568 (1-2), 84.
(104) Tseng, Y.-T.; Lu, H.-Y.; Li, J.-R.; Tung, W.-J.; Chen, W.-H.; Chau, L.-K. Facile functionalization of polymer surfaces in aqueous and polar organic solvents via 3-mercaptopropylsilatrane. ACS applied materials & interfaces 2016, 8 (49), 34159.
(105) Zhu, M.; Lerum, M. Z.; Chen, W. How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir 2012, 28 (1), 416.
(106) Naik, V. V.; Städler, R.; Spencer, N. D. Effect of leaving group on the structures of alkylsilane SAMs. Langmuir 2014, 30 (49), 14824.
(107) Mozetič, M.; Multidisciplinary Digital Publishing Institute, 2019.
(108) Tabor, H. In Solar Energy Conversion; Dixon, A. E.;Leslie, J. D., Eds.; Pergamon, 1979.
(109) Bagreev, A.; Bandosz, T. J.; Locke, D. C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 2001, 39 (13), 1971.
(110) Park, H.; Choi, S.; Lee, S.; Koh, K. H. Formation of graphite nanocones using metal nanoparticles as plasma etching masks. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2004, 22 (3), 1290.
(111) Park, K. H.; Lee, S.; Koh, K. H.; Lacerda, R.; Teo, K.; Milne, W. Advanced nanosphere lithography for the areal-density variation of periodic arrays of vertically aligned carbon nanofibers. Journal of Applied Physics 2005, 97 (2), 024311.
(112) Stein, A.; Schroden, R. Current Opinion Solid State Mater. Sci 2001, 5, 553.
(113) De Franceschi, S.; Kouwenhoven, L.; Schönenberger, C.; Wernsdorfer, W. Hybrid superconductor–quantum dot devices. Nature nanotechnology 2010, 5 (10), 703.
(114) Bélanger, S.; Hupp, J. T. Porphyrin‐based thin‐film molecular materials with highly adjustable nanoscale porosity and permeability characteristics. Angewandte Chemie International Edition 1999, 38 (15), 2222.
(115) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705.
(116) Férey, G. Hybrid porous solids: past, present, future. Chemical Society Reviews 2008, 37 (1), 191.
(117) Kitagawa, S.; Kitaura, R.; Noro, S. i. Functional porous coordination polymers. Angewandte Chemie International Edition 2004, 43 (18), 2334.
(118) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300 (5622), 1127.
(119) Flaugh, P. L.; O'Donnell, S. E.; Asher, S. A. Development of a new optical wavelength rejection filter: demonstration of its utility in Raman spectroscopy. Applied spectroscopy 1984, 38 (6), 847.
(120) Adams, D. M.; Kerimo, J.; Liu, C.-Y.; Bard, A. J.; Barbara, P. F. Electric field modulated near-field photo-luminescence of organic thin films. The Journal of Physical Chemistry B 2000, 104 (29), 6728.
(121) Kimura, M.; Saito, Y.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Self-organization of supramolecular complex composed of rigid dendritic porphyrin and fullerene. Journal of the American Chemical Society 2002, 124 (19), 5274.
(122) Burrows, H.; Gonsalves, A. R.; Leitao, M.; Miguel, M. d. G.; Pereira, M. Phase transitions and self-assembly in meso-tetrakis (undecyl) porphyrin. Supramolecular Science 1997, 4 (3-4), 241.
(123) Tsuda, A.; Osuka, A. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science 2001, 293 (5527), 79.
(124) Suslick, K. S.; Rakow, N. A.; Kosal, M. E.; Chou, J. H. The materials chemistry of porphyrins and metalloporphyrins. Journal of Porphyrins and Phthalocyanines 2000, 4 (4), 407.
(125) Filippini, D.; Alimelli, A.; Di Natale, C.; Paolesse, R.; D'Amico, A.; Lundström, I. Chemical sensing with familiar devices. Angewandte Chemie 2006, 118 (23), 3884.
(126) Malinski, T.; Taha, Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 1992, 358 (6388), 676.
(127) Chen, Y.; Li, A.; Huang, Z.-H.; Wang, L.-N.; Kang, F. Porphyrin-based nanostructures for photocatalytic applications. Nanomaterials 2016, 6 (3), 51.
(128) Ussia, M.; Bruno, E.; Spina, E.; Vitalini, D.; Pellegrino, G.; Ruffino, F.; Privitera, V.; Carroccio, S. C. Freestanding photocatalytic materials based on 3D graphene and polyporphyrins. Scientific reports 2018, 8 (1), 1.
(129) Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395 (6698), 151.
(130) Kwong, R. C.; Sibley, S.; Dubovoy, T.; Baldo, M.; Forrest, S. R.; Thompson, M. E. Efficient, saturated red organic light emitting devices based on phosphorescent platinum (II) porphyrins. Chemistry of Materials 1999, 11 (12), 3709.
(131) Roth, K. M.; Dontha, N.; Dabke, R. B.; Gryko, D. T.; Clausen, C.; Lindsey, J. S.; Bocian, D. F.; Kuhr, W. G. Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2000, 18 (5), 2359.
(132) Jurow, M.; Schuckman, A. E.; Batteas, J. D.; Drain, C. M. Porphyrins as molecular electronic components of functional devices. Coordination chemistry reviews 2010, 254 (19-20), 2297.
(133) Pratviel, G. Porphyrins in complex with DNA: Modes of interaction and oxidation reactions. Coordination Chemistry Reviews 2016, 308, 460.
(134) Mathew, D.; Sujatha, S. Interactions of porphyrins with DNA: A review focusing recent advances in chemical modifications on porphyrins as artificial nucleases. Journal of Inorganic Biochemistry 2021, 111434.
(135) Ghann, W.; Chavez-Gil, T.; Goede, C. I.; Kang, H.; Khan, S.; Sobhi, H.; Nesbitt, F.; Uddin, J. Photophysical, electrochemical and photovoltaic properties of porphyrin-based dye sensitized solar cell. Advances in Materials Physics and Chemistry 2017, 7 (5), 148.
(136) Bruhn, T.; Brueckner, C. The origin of the absorption spectra of porphyrin N-and dithiaporphyrin S-oxides in their neutral and protonated states. Physical Chemistry Chemical Physics 2015, 17 (5), 3560.
(137) Molnar, E.; Gál, E.; Găină, L.; Cristea, C.; Silaghi-Dumitrescu, L. Ethyne Functionalized Meso-Phenothiazinyl-Phenyl-Porphyrins: Synthesis and Optical Properties of Free Base Versus Protonated Species. Molecules 2020, 25 (19), 4546.
(138) Jing, L.; Jianhua, X.; Shuang, X. Volatile organic compound colorimetric array based on zinc porphyrin and metalloporphyrin derivatives. Energy Procedia 2011, 12, 625.
(139) Önal, M. E., Lyon 1, 2014.
(140) Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal− organic framework sheets. Journal of the American Chemical Society 2011, 133 (15), 5640.
(141) Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal–organic framework. Nature materials 2010, 9 (7), 565.