簡易檢索 / 詳目顯示

研究生: 陳筱如
Chen, Shiao-Ru
論文名稱: 黑碳的定量分析及其在環境研究上之應用
Quantitative analysis of black carbon and its applications to environmental studies
指導教授: 羅尚德
Luo, ShangDe
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 67
中文關鍵詞: 黑碳CTO-375法硝酸消化法日月潭降雨量
外文關鍵詞: Black carbon, CTO-375 method, HNO3 digestion method, Sun Moon Lake, Rainfal
相關次數: 點閱:159下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   黑碳為化石燃料或生質能物質經不完全燃燒後所殘留的含碳物質,是一種頑抗性高的物質,化學與物理性質都十分穩定。並以氣溶膠型式散布在大氣中,經由乾、溼沉降,最後在陸地或海洋沉積環境中長時間保存,對於環境污染有嚴重的影響。在地質研究中,可提供過去重大森林火災的燃燒紀錄、以及人類使用化石燃料的演進過程。由於燃燒環境條件的不同,所產生的黑碳種類也會有所差異,造成在定量黑碳的方法上產生爭議,故本研究希望透過CTO-375法與硝酸消化法的比較,建立一精準分析黑碳的方法。經實驗發現,在CTO-375法測定下,黑碳的熱穩定性質差,不利於用單一溫度作為測定黑碳的界線;然而相較於CTO-375法,黑碳在12N硝酸環境下有良好的穩定性,且能同時有效去除有機碳等非黑碳物質,達到精準定量環境物質中黑碳的工作。
      本研究同時將硝酸消化法的技術應用於測定台灣日月潭湖相沉積物,日月潭遠離主要的重工業區與城市都會區,汙染物主要來自於大氣傳輸,故可作為示蹤汙染源的研究區域。經210Pb定年法測定沉積速率後,以1939年建壩時間作為一沉積環境改變的界線。近年來,受人類活動與工業快速發展的影響,黑碳量有逐年增加趨勢;而從日月潭年平均降雨量的分布情形,發現雨量的清除作用是影響黑碳濃度的重要因素。

      Black Carbon (BC) is refractory carbonaceous particles released into the atmosphere mainly from incomplete combustion of fossil fuels and biomass. It is scavenged from the atmosphere via rainfall precipitation and deposits into the lacustrine and marine sediments, providing a record for paleo-wild fire events as well as the history of air pollution associated with anthropogenic fossil fuel combustion.
      BC measurement techniques have been an important object of study for decades. However, there is not much agreement reached as to which methods can give more reliable results. In this study, we compared HNO3 digestion with CTO-375 method for the carbonaceous materials. We find that different BC and non-BC materials have different thermal stabilities, and there is no single temperature to isolate these materials. However, BC has a high stability under the HNO3 digestion. Our data suggests that the HNO3 pretreatment not only retains most of BC, but also effectively removes the non-BC from the samples. We proposed that 12N HNO3 digestion method is a more reliable method for analysis of BC in environmental samples.
      We used this analysis technique to quantify of BC in the lacustrine sediment of Taiwan. The Sun Moon Lake is a high-mountain lake which is far away from the urbanized or industrial areas, so it is a good place to investigate the atmospheric deposition of anthropogenic pollutants. According to the Pb-210 dating results, the 1939 A.D. is a crisis time of the dam construction, and also as a boundary between the two different sedimentary environments. Over the last decades, the increasing trend of BC is affected by the fast growing industrial developments. From the annual rainfall data of the Sun Moon Lake, we find that wet deposition is a significant effect for removal BC from the atmosphere into the reservoir.

    Part I. Quantification of Black Carbon in environmental samples:A comparison of nitric acid digestion with CTO-375 methods Chapter 1 Introduction 2  1.1 Black Carbon 2  1.2 BC classifications 4  1.3 Challenges in BC quantification 6 Chapter 2 Materials and methods 11  2.1 Materials 11   2.1.1 BC materials 11   2.1.2 Non-BC materials 12  2.2 Methods 13   2.2.1 Chemothermal Oxidation method 13   2.2.2 Nitric acid digestion method 14   2.2.3 TOC analysis 16 Chapter 3 Results and discussions 19  3.1 Mass recovery after combustion 19  3.2 Mass recovery after HNO3 digestion 22  3.3 Retention of BC materials after combustion and HNO3 digestion 23  3.4 Retention of non-BC materials after combustion and HNO3 digestion 25  3.5 HNO3 digestion efficiency influenced by time and temperature 27 Chapter 4 Conclusions 29 Chapter 5 References 30 ---------------------------------- Part II. Quantification of Black Carbon in Sun Moon Lake of Taiwan Chapter 1 Introduction 35 Chapter 2 Materials and methods 37  2.1 Sampling location 37  2.2 Dating methods 37  2.3 BC analysis 39 Chapter 3 Results and discussions 40  3.1 Information on the sediment core st 8-1 40  3.2 Dating the sedimentation rate with 210Pb and 137Cs 41  3.3 Distribution of BC in the sediments: its origin and source 44  3.4 Distribution of BC/TOC ratio in the sediments 45  3.5 Depositional flux of BC during the last decades 48  3.6 Mechanisms control the short-term variability of BC deposition 52  3.7 Relationship between BC and TOC in the core 53 Chapter 4 Conclusions 54 Chapter 5 References 55 Summary 56 Appendix (I) Datas 57 Appendix (II) A presentation on the 2009 Ocean Science Meeting 64

    林昭遠,集水區環境敏感區位劃定系統在鄉村區土地適宜性評估之應用,2005
    黃清吟,林朝欽,臺灣地區國有林森林火之特性分析,中華林學季刊,38(4),2005
    中央氣象局編,氣候資料年報,1980-2009

     Accardi-Dey, 2006, Black carbon in marine sediments: Quantification and implications for the sorption of polycyclic aromatic hydrocarbons: Ph.D. thesis, 281 pp., Mass. Inst. of Technol., Cambridge, Mass.
     Buckley, D.R., Rockne, K.J., Li, A., and Mills, W.J., 2004, Soot deposition in the Great Lakes: Implications for semi-volatile hydrophobic organic pollutant deposition: Environmental Science & Technology, v. 38, p. 1732-1739.
     Chi, K.H., Luo, S.D., Hsu, S.C., Kao, S.J., Tsai, Y.J., and Chang, M.B., 2009, Historical trends of dioxin-like compounds and heavy metals in sediments buried in a reservoir in central Taiwan: Chemosphere, v. 76, p. 286-292.
     Chow, J.C., Watson, J.G., Crow, D., Lowenthal, D.H., and Merrifield, T., 2001, Comparison of IMPROVE and NIOSH carbon measurements: Aerosol Science and Technology, v. 34, p. 23-34.
     Dickens, A.F., Gelinas, Y., Masiello, C.A., Wakeham, S., and Hedges, J.I., 2004, Reburial of fossil organic carbon in marine sediments: Nature, v. 427, p. 336-339.
     Elmquist, M., Cornelissen, G., Kukulska, Z., and Gustafsson, O., 2006, Distinct oxidative stabilities of char versus soot black carbon: Implications for quantification and environmental recalcitrance: Global Biogeochemical Cycles, v. 20.
     Elmquist, M., Zencak, Z., and Gustafsson, O., 2007, A 700 year sediment record of black carbon and polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden: Environmental Science & Technology, v. 41, p. 6926-6932.
     Gelinas, Y., Prentice, K.M., Baldock, J.A., and Hedges, J.I., 2001, An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils: Environmental Science & Technology, v. 35, p. 3519-3525.
     Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., and Zech, W., 2000, Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region, Pergamon-Elsevier Science Ltd, p. 669-678.
     Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W., 1998, Black carbon in soils: the use of benzenecarboxylic acids as specific markers: Organic Geochemistry, v. 29, p. 811-819.
     Goldberg, E.D., 1985, Black Carbon in the Environment.: John Wiley & Sons, New York.
    Grossman, A., and Ghosh, U., 2009, Measurement of activated carbon and other black carbons in sediments: Chemosphere, v. 75, p. 469-475.
     Gustafsson, O., Bucheli, T.D., Kukulska, Z., Andersson, M., Largeau, C., Rouzaud, J.N., Reddy, C.M., and Eglinton, T.I., 2001, Evaluation of a protocol for the quantification of black carbon in sediments: Global Biogeochemical Cycles, v. 15, p. 881-890.
     Gustafsson, O., and Gschwend, P.M., 1998, The flux of black carbon to surface sediments on the New England continental shelf: Geochimica Et Cosmochimica Acta, v. 62, p. 465-472.
     Gustafsson, O., Haghseta, F., Chan, C., MacFarlane, J., and Gschwend, P.M., 1997, Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability: Environmental Science & Technology, v. 31, p. 203-209.
     Hammes, K., Schmidt, M.W.I., Smernik, R.J., Currie, L.A., Ball, W.P., Nguyen, T.H., Louchouarn, P., Houel, S., Gustafsson, O., Elmquist, M., Cornelissen, G., Skjemstad, J.O., Masiello, C.A., Song, J., Peng, P., Mitra, S., Dunn, J.C., Hatcher, P.G., Hockaday, W.C., Smith, D.M., Hartkopf-Froeder, C., Boehmer, A., Luer, B., Huebert, B.J., Amelung, W., Brodowski, S., Huang, L., Zhang, W., Gschwend, P.M., Flores-Cervantes, D.X., Largeau, C., Rouzaud, J.N., Rumpel, C., Guggenberger, G., Kaiser, K., Rodionov, A., Gonzalez-Vila, F.J., Gonzalez-Perez, J.A., de la Rosa, J.M., Manning, D.A.C., Lopez-Capel, E., and Ding, L., 2007, Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere: Global Biogeochemical Cycles, v. 21, p. 18.
     Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kogel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W., and Rullkotter, J., 2000, The molecularly-uncharacterized component of nonliving organic matter in natural environments: Organic Geochemistry, v. 31, p. 945-958.
     Huh, C.A., Chu, K.S., Wei, C.L., and Liew, P.M., 1996, Lead-210 and plutonium fallout in Taiwan as recorded at a subalpine lake: Journal of Southeast Asian Earth Sciences, v. 14, p. 373-376.
     Hung, C.C., Gong, G.C., Jiann, K.T., Yeager, K.M., Santschi, P.H., Wade, T.L., Sericano, J.L., and Hsieh, H.L., 2006, Relationship between carbonaceous materials and polychlorinated biphenyls (PCBs) in the sediments of the Danshui River and adjacent coastal areas, Taiwan: Chemosphere, v. 65, p. 1452-1461.
     Hutton, A., Bharati, S., and Robl, T., 1994, Chemical and Petrographic Classification of Kerogen/Materals: Energy & Fuels, v. 8, p. 1478-1488.
     Jonker, M.T.O., and Koelmans, A.A., 2001, Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot: Environmental Science & Technology, v. 35, p. 3742-3748.
     Kuhlbusch, T.A.J., 1995, Method for Determining Black Carbon in Residues of Vegetation Fires: Environmental Science & Technology, v. 29, p. 2695-2702.
     Kunzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak, F., Puybonnieux-Texier, V., Quenel, P., Schneider, J., Seethaler, R., Vergnaud, J.C., and Sommer, H., 2000, Public-health impact of outdoor and traffic-related air pollution: a European assessment: Lancet, v. 356, p. 795-801.
     Leifeld, J., 2007, Thermal stability of black carbon characterised by oxidative differential scanning calorimetry: Organic Geochemistry, v. 38, p. 112-127.
     Lim, B., and Cachier, H., 1996, Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays: Chemical Geology, v. 131, p. 143-154.
     Masiello, C.A., 2004, New directions in black carbon organic geochemistry: Marine Chemistry, v. 92, p. 201-213.
     Masiello, C.A., Druffel, E.R.M., and Currie, L.A., 2002, Radiocarbon measurements of black carbon in aerosols and ocean sediments: Geochimica Et Cosmochimica Acta, v. 66, p. 1025-1036.
     Menon, S., Hansen, J., Nazarenko, L., and Luo, Y.F., 2002, Climate effects of black carbon aerosols in China and India: Science, v. 297, p. 2250-2253.
     Moore, E.A., and Kurtz, A.C., 2008, Black carbon in Paleocene-Eocene boundary sediments: A test of biomass combustion as the PETM trigger: Palaeogeography Palaeoclimatology Palaeoecology, v. 267, p. 147-152.
     Muri, G., Cermelj, B., Faganeli, J., and Brancelj, A., 2002, Black carbon in Slovenian alpine lacustrine sediments: Chemosphere, v. 46, p. 1225-1234.
     Nam, J.J., Orjan Gustafsson, Perihan Kurt-Karakus, Knut Breivik, Eiliv Steinnes, and Jones, K.C., 2008, Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate: Environmental Pollution, v. 156, p. 809-817.
     Nguyen, T.H., Brown, R.A., and Ball, W.P., 2004, An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment: Organic Geochemistry, v. 35, p. 217-234.
     Pakkanen, T.A., Kerminen, V.M., Ojanen, C.H., Hillamo, R.E., Aarnio, P., and Koskentalo, T., 2000, Atmospheric black carbon in Helsinki: Atmospheric Environment, v. 34, p. 1497-1506.
     Poot, A., Quik, J.T.K., Veld, H., and Koelmans, A.A., 2009, Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods: Journal of Chromatography A, v. 1216, p. 613-622.
     Ramanathan, V., and Carmichael, G., 2008, Global and regional climate changes due to black carbon: Nature Geoscience, v. 1, p. 221-227.
     Ramanathan, V., Crutzen, P.J., Kiehl, J.T., and Rosenfeld, D., 2001, Atmosphere - Aerosols, climate, and the hydrological cycle: Science, v. 294, p. 2119-2124.
     Ramanathan, V., and Feng, Y., 2009, Air pollution, greenhouse gases and climate change: Global and regional perspectives: Atmospheric Environment, v. 43, p. 37-50.
     Schmidt, M.W.I., and Noack, A.G., 2000, Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges: Global Biogeochemical Cycles, v. 14, p. 777-793.
     Silva, S.R., 2003, Properties of amorphous carbon: London: INSPEC.
     Smith, D.M., Griffin, J.J., and Goldberg, E.D., 1975, Spectrometric method for the quantitative determination of elemental carbon: Analytical Chemistry, v. 47, p. 233-238.
     Song, J.Z., Peng, P.A., and Huang, W.L., 2002, Black carbon and kerogen in soils and sediments. 1. Quantification and characterization: Environmental Science & Technology, v. 36, p. 3960-3967.
     Sun, X.S., Peng, P.A., Song, J.Z., Zhang, G., and Hu, J.F., 2008, Sedimentary record of black carbon in the Pearl River estuary and adjacent northern South China Sea: Applied Geochemistry, v. 23, p. 3464-3472.
     Verardo, D.J., 1997, Charcoal analysis in marine sediments: Limnology and Oceanography,
    v. 42, p. 192-197.
     Wik, M., and Renberg, I., 1996, Environmental records of carbonaceous fly-ash particles from fossil-fuel combustion: Journal of Paleolimnology, v. 15, p. 193-206.

    下載圖示 校內:2015-07-14公開
    校外:2015-07-14公開
    QR CODE