| 研究生: |
李雅文 Li, Ya-Wen |
|---|---|
| 論文名稱: |
磊晶(Sb1-xBix)2Te3/Ni80Fe20之自旋幫浦研究 Spin pumping in epitaxial (Sb1-xBix)2Te3/Ni80Fe20 |
| 指導教授: |
黃榮俊
Huang, Jung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 自旋幫浦 、拓樸絕緣體 、自旋流轉電流效率 、Inverse Edelstein效應 |
| 外文關鍵詞: | Spin pumping, Topological insulator, spin to charge conversion, Inverse Edelstein effect |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗中,先利用分子束磊晶系統(Molecular Beam Epitaxy, MBE) 成長良好的(Sb1-xBix)2Te3薄膜,隨著調控MBE的流量比率來成長這個三元的拓樸絕緣體(Topological insulators, TIs)薄膜,再利用脈衝雷射沉積儀(Pulsed Laser Deposition, PLD) 在拓樸層上蓋鎳鐵合金(Ni80Fe20, Py)層形成雙層結構,並在室溫下將該樣品應用至自旋幫浦系統中,量測其鐵磁共振訊號以及電壓訊號,並計算這個系統的自旋流轉電流的轉換效率,隨著Bi摻雜比例的變化,此拓樸絕緣體的費米能階(Fermi level)位置也會隨之改變,因此實驗中想要探討當費米能階變化時此系統的轉換效率會有什麼改變,而最後結果證實藉由細微地調控TI的費米能階位置會是造成轉換效率最大化的因素。
In this thesis, we use the topological insulator thin films (Sb1-xBix)2Te3 ternary compounds of different Bi-doped ratio and then grow permalloy (Py, Ni80Fe20) on these topological insulators to do the spin pumping experiment at room temperature. By systematically varying x in (Sb1-xBix)2Te3 thin films, the Fermi level position of their electronic band structures will change and can be observed by ARPES. The results show that when the Fermi level closes to Dirac point the spin to charge conversion efficiency, characterized by the inverse Edelstein effect length λIEE, would reach maximum.
[1] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. Piramanayagam, "Spintronics based random access memory: a review," Materials Today, vol. 20, no. 9, pp. 530-548, 2017.
[2] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, "Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect," Applied physics letters, vol. 88, no. 18, p. 182509, 2006.
[3] L. Liu, C.-F. Pai, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, "Spin-torque switching with the giant spin Hall effect of tantalum," Science, vol. 336, no. 6081, pp. 555-558, 2012.
[4] C. R. Ast et al., "Giant spin splitting through surface alloying," Physical Review Letters, vol. 98, no. 18, p. 186807, 2007.
[5] J.-C. Rojas-Sánchez et al., "Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films," Physical review letters, vol. 116, no. 9, p. 096602, 2016.
[6] L. Liu, T. Moriyama, D. Ralph, and R. Buhrman, "Spin-torque ferromagnetic resonance induced by the spin Hall effect," Physical review letters, vol. 106, no. 3, p. 036601, 2011.
[7] N. Vlietstra, J. Shan, B. Van Wees, M. Isasa, F. Casanova, and J. B. Youssef, "Simultaneous detection of the spin-Hall magnetoresistance and the spin-Seebeck effect in platinum and tantalum on yttrium iron garnet," Physical Review B, vol. 90, no. 17, p. 174436, 2014.
[8] A. Oiwa, Y. Mitsumori, R. Moriya, T. Słupinski, and H. Munekata, "Effect of Optical Spin Injection on Ferromagnetically Coupled Mn Spins in the III-V Magnetic Alloy Semiconductor (G a, M n) As," Physical review letters, vol. 88, no. 13, p. 137202, 2002.
[9] J. Zhang et al., "Band structure engineering in (Bi 1− x Sb x) 2 Te 3 ternary topological insulators," Nature communications, vol. 2, p. 574, 2011.
[10] H. Wang et al., "Surface-state-dominated spin-charge current conversion in topological-insulator–ferromagnetic-insulator heterostructures," Physical review letters, vol. 117, no. 7, p. 076601, 2016.
[11] K. Kondou et al., "Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators," Nature Physics, vol. 12, no. 11, p. 1027, 2016.
[12] L. He, X. Kou, and K. L. Wang, "Review of 3D topological insulator thin‐film growth by molecular beam epitaxy and potential applications," physica status solidi (RRL)–Rapid Research Letters, vol. 7, no. 1‐2, pp. 50-63, 2013.
[13] M. Z. Hasan and J. E. Moore, "Three-dimensional topological insulators," Annu. Rev. Condens. Matter Phys., vol. 2, no. 1, pp. 55-78, 2011.
[14] Y. Xia et al., "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface," Nature physics, vol. 5, no. 6, p. 398, 2009.
[15] D. Hsieh et al., "Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi 2 Te 3 and Sb 2 Te 3," Physical review letters, vol. 103, no. 14, p. 146401, 2009.
[16] C. Kane and J. Moore, "Topological insulators," Physics World, vol. 24, no. 02, p. 32, 2011.
[17] Y. Wen-Min, L. Chao-Jing, L. Jian, and L. Yong-Qing, "Electrostatic field effects on three-dimensional topological insulators," Chinese Physics B, vol. 22, no. 9, p. 097202, 2013.
[18] A. Hoffmann, "Spin Hall effects in metals," IEEE transactions on magnetics, vol. 49, no. 10, pp. 5172-5193, 2013.
[19] S. Takahashi and S. Maekawa, "Spin current, spin accumulation and spin Hall effect," Science and Technology of Advanced Materials, vol. 9, no. 1, p. 014105, 2008.
[20] J. Hirsch, "Spin hall effect," Physical Review Letters, vol. 83, no. 9, p. 1834, 1999.
[21] G.-Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, "Intrinsic spin Hall effect in platinum: First-principles calculations," Physical review letters, vol. 100, no. 9, p. 096401, 2008.
[22] A. Barman and J. Sinha, Spin dynamics and damping in ferromagnetic thin films and nanostructures. Springer, 2018.
[23] E. Lesne et al., "Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces," Nature materials, vol. 15, no. 12, p. 1261, 2016.
[24] H. Nakayama et al., "Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni 81 Fe 19/Pt films," Physical Review B, vol. 85, no. 14, p. 144408, 2012.
[25] P.-Y. Chuang, "以角解析光電子能譜術探討新穎拓樸材料晶體與電子結構之物理特性," 成功大學物理學系學位論文, pp. 1-96, 2018.
[26] Y. Xia, Photoemission studies of a new topological insulator class: Experimental discovery of the bismuth-X3 topological insulator class. Princeton University, 2010.
[27] A. Takayama, High-Resolution Spin-Resolved Photoemission Spectrometer and the Rashba Effect in Bismuth Thin Films. Springer, 2014.
[28] 劉芝華, "以自旋幫浦機制探討氧化鋅之自旋擴散長度," 成功大學物理學系學位論文, pp. 1-53, 2016.
[29] S. Pinon et al., "Development of a microsystem based on a microfluidic network to tune and reconfigure RF circuits," Journal of Micromechanics and Microengineering, vol. 22, no. 7, p. 074005, 2012.
[30] M. Jamali et al., "Giant spin pumping and inverse spin Hall effect in the presence of surface and bulk spin− orbit coupling of topological insulator Bi2Se3," Nano letters, vol. 15, no. 10, pp. 7126-7132, 2015.
[31] P. Noel et al., "Highly efficient spin-to-charge current conversion in strained HgTe surface states protected by a HgCdTe layer," Physical review letters, vol. 120, no. 16, p. 167201, 2018.