| 研究生: |
蘇酉澤 Su, You-Ze |
|---|---|
| 論文名稱: |
整合金屬有機框架與3D列印製備具感測性質離子凝膠及PEDOT:PSS大孔材料 Integrating Metal-Organic Framework and 3D Printing for Ionogels with Sensing Performance and PEDOT:PSS Macroporous materials |
| 指導教授: |
游聲盛
Yu, Sheng-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 3D列印 、MOF-525 、奈米複合離子凝膠 、深共熔溶劑 、可穿戴式感測器 、UiO-66 、PEDOT:PSS 、定向冷凍 、超級電容器 |
| 外文關鍵詞: | 3D printing, MOF-525, nanocomposite ionogels, deep eutectic solvents, wearable sensors, UiO-66, PEDOT:PSS, directional freezing, supercapacitors |
| 相關次數: | 點閱:30 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將分為兩個部份探討,並且皆以金屬有機框架(Metal-organic framework, MOF)為核心,根據其特定的特性去開發相關應用。第一部分中,我們將金屬有機框架引入基於深共熔溶劑(Deep eutectic solvents, DES)的離子凝膠系統,並結合3D列印技術,開發出具有優異機械性能的可穿戴感測設備。當暴露於酸性環境時,凝膠中以鋯為基底的金屬有機框架會呈現顏色變化,使這些可穿戴傳感器不僅能夠記錄人體活動產生的信號,還能作為環境檢測的指示器。
第二部分中,我們探索了定向冷凍所製備之金屬有機框架複合材料在電化學應用中的潛力。將導電高分子Poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)之水溶液定向冷凍後,可製備出利於UiO-66成長的巨孔氣凝膠結構。儘管金屬有機框架本身導電性較差,但我們可以通過後修飾的方式來增強其電荷傳輸的性能。結合金屬有機框架與導電聚合物PEDOT:PSS形成導電複合材料,我們成功開發出具有高功率密度和快速充放電能力的超級電容器。此外,我們發現PEDOT:PSS能夠用於3D列印技術,提供更多電化學相關應用的機會。
This study is divided into two parts, both centered around metal-organic framework (MOF), with each part focusing on developing related applications based on their specific characteristics. In the first part, we incorporate MOF into an ionogels system based on deep eutectic solvents (DES), and combine this with three-dimensional printing technology to develop wearable sensing devices with excellent mechanical properties. Additionally, zirconium-based MOF exhibits a colorimetric change when exposed to acidic environments, making these wearable sensors capable of recording signals generated by human activities and serving as indicators for environmental detection.
The second part explores the potential of MOFs-based composites prepared by directional freezing in electrochemical applications. Directional freezing of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) aqueous ink leads to PEDOT:PSS aerogels with macropores for efficient growth of UiO-66. Post-synthetic modifications further overcome the inherently poor conductivity of MOF. The resulting Mn-UiO-66/PEDOT:PSS composite can be used as supercapacitors with high power density and rapid charge-discharge capabilities. Furthermore, the PEDOT:PSS aqueous ink can also be utilized in 3D printing to facilitate additional electrochemical applications.
(1) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
(2) Ferey, G. Hybrid porous solids: past, present, future. Chemical Society Reviews 2008, 37 (1), 191-214.
(3) Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials 2016, 1 (3), 15018.
(4) Farha, O. K.; Yazaydin, A. O.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry 2010, 2 (11), 944-948.
(5) Xue, M.; Liu, Y.; Schaffino, R. M.; Xiang, S.; Zhao, X.; Zhu, G. S.; Qiu, S. L.; Chen, B. New prototype isoreticular metal-organic framework Zn(4)O(FMA)(3) for gas storage. Inorganic Chemistry 2009, 48 (11), 4649-4651.
(6) Botas, J. A.; Calleja, G.; Sanchez-Sanchez, M.; Orcajo, M. G. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 2010, 26 (8), 5300-5303.
(7) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chemical Society Reviews 2009, 38 (5), 1450-1459.
(8) Pascanu, V.; Gonzalez Miera, G.; Inge, A. K.; Martin-Matute, B. Metal-organic frameworks as catalysts for organic synthesis: a critical perspective. Journal of the American Chemical Society 2019, 141 (18), 7223-7234.
(9) Wang, Y. S.; Chen, Y. C.; Li, J. H.; Kung, C. W. Toward metal–organic‐framework‐based supercapacitors: room‐temperature synthesis of electrically conducting MOF‐based nanocomposites decorated with redox‐active manganese. European Journal of Inorganic Chemistry 2019, 2019 (26), 3036-3044.
(10) Shin, S. J.; Gittins, J. W.; Balhatchet, C. J.; Walsh, A.; Forse, A. C. Metal–organic framework supercapacitors: challenges and opportunities. Advanced Functional Materials 2023, 2308497.
(11) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
(12) Campbell, M. G.; Dinca, M. Metal-organic frameworks as active materials in electronic sensor devices. Sensors (Basel) 2017, 17 (5), 1108.
(13) Yuan, S.; Qin, J. S.; Lollar, C. T.; Zhou, H. C. Stable metal-organic frameworks with group 4 metals: current status and trends. ACS Central Science 2018, 4 (4), 440-450.
(14) Pal, S.; Yu, S.-S.; Kung, C.-W. Group 4 metal-based metal—organic frameworks for chemical sensors. Chemosensors 2021, 9 (11).
(15) Chen, Z.; Hanna, S. L.; Redfern, L. R.; Alezi, D.; Islamoglu, T.; Farha, O. K. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews 2019, 386, 32-49.
(16) Deibert, B. J.; Li, J. A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium-porphyrin metal-organic framework. Chemical Communications 2014, 50 (68), 9636-9639.
(17) Sousaraei, A.; Queirós, C.; Moscoso, F. G.; Silva, A. M. G.; Lopes‐Costa, T.; Pedrosa, J. M.; Cunha‐Silva, L.; Cabanillas‐Gonzalez, J. Reversible protonation of porphyrinic metal‐organic frameworks embedded in nanoporous polydimethylsiloxane for colorimetric sensing. Advanced Materials Interfaces 2021, 8 (10), 929-938.
(18) Smith, K. T.; Ramsperger, C. A.; Hunter, K. E.; Zuehlsdorff, T. J.; Stylianou, K. C. Colorimetric detection of acidic pesticides in water. Chemical Communications 2022, 58 (7), 953-956.
(19) Zhu, Y.; Zhang, J.; Song, J.; Yang, J.; Du, Z.; Zhao, W.; Guo, H.; Wen, C.; Li, Q.; Sui, X.; Zhang, L. A multifunctional pro‐healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Advanced Functional Materials 2019, 30 (6), 822-830.
(20) Matzeu, G.; Mogas-Soldevila, L.; Li, W.; Naidu, A.; Turner, T. H.; Gu, R.; Blumeris, P. R.; Song, P.; Pascal, D. G.; Guidetti, G.; et al. Large-scale patterning of reactive surfaces for wearable and environmentally deployable sensors. Advanced Materials 2020, 32 (28), 525-533.
(21) Li, J.-H.; Wang, Y.-S.; Chen, Y.-C.; Kung, C.-W. Metal–organic frameworks toward electrocatalytic applications. Applied Sciences 2019, 9 (12), 2427-2435.
(22) Usov, P. M.; Fabian, C.; D'Alessandro, D. M. Rapid determination of the optical and redox properties of a metal-organic framework via in situ solid state spectroelectrochemistry. Chemical Communications 2012, 48 (33), 3945-3947.
(23) Ahrenholtz, S. R.; Epley, C. C.; Morris, A. J. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. Journal of the American Chemical Society 2014, 136 (6), 2464-2472.
(24) Li, Z.; Peters, A. W.; Bernales, V.; Ortuno, M. A.; Schweitzer, N. M.; DeStefano, M. R.; Gallington, L. C.; Platero-Prats, A. E.; Chapman, K. W.; Cramer, C. J.; et al. Metal-organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature. ACS Central Science 2017, 3 (1), 31-38.
(25) Chuang, C.-H.; Li, J.-H.; Chen, Y.-C.; Wang, Y.-S.; Kung, C.-W. Redox-hopping and electrochemical behaviors of metal–organic framework thin films fabricated by various approaches. The Journal of Physical Chemistry C 2020, 124 (38), 20854-20863.
(26) Wang, Y.-S.; Liao, J.-L.; Li, Y.-S.; Chen, Y.-C.; Li, J.-H.; Ho, W. H.; Chiang, W.-H.; Kung, C.-W. Zirconium-based metal–organic framework nanocomposites containing dimensionally distinct nanocarbons for pseudocapacitors. ACS Applied Nano Materials 2020, 3 (2), 1448-1456.
(27) Jost, K.; Dion, G.; Gogotsi, Y. Textile energy storage in perspective. Journal of Materials Chemistry A 2014, 2 (28), 10776-10782.
(28) Kung, C.-W.; Han, P.-C.; Chuang, C.-H.; Wu, K. C. W. Electronically conductive metal–organic framework-based materials. APL Materials 2019, 7 (11), 902-910.
(29) Micheroni, D.; Lan, G.; Lin, W. Efficient electrocatalytic proton reduction with carbon nanotube-supported metal-organic frameworks. Journal of the American Chemical Society 2018, 140 (46), 15591-15595.
(30) Schulze, H. A.; Hoppe, B.; Schäfer, M.; Warwas, D. P.; Behrens, P. Electrically conducting nanocomposites of carbon nanotubes and metal‐organic frameworks with strong interactions between the two components. ChemNanoMat 2019, 5 (9), 1159-1169.
(31) Jahan, M.; Bao, Q.; Loh, K. P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. Journal of the American Chemical Society 2012, 134 (15), 6707-6713.
(32) Li, C.; Hu, C.; Zhao, Y.; Song, L.; Zhang, J.; Huang, R.; Qu, L. Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior. Carbon 2014, 78, 231-242.
(33) Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X.; Perman, J. A.; Ma, S. A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. Journal of Materials Chemistry A 2017, 5 (18), 8385-8393.
(34) Lin, C. C.; Huang, Y. C.; Usman, M.; Chao, W. H.; Lin, W. K.; Luo, T. T.; Whang, W. T.; Chen, C. H.; Lu, K. L. Zr-MOF/Polyaniline composite films with exceptional seebeck coefficient for thermoelectric material applications. ACS Applied Materials & Interfaces 2019, 11 (3), 3400-3406.
(35) Mohmeyer, A.; Schaate, A.; Hoppe, B.; Schulze, H. A.; Heinemeyer, T.; Behrens, P. Direct grafting-from of PEDOT from a photoreactive Zr-based MOF - a novel route to electrically conductive composite materials. Chemical Communications 2019, 55 (23), 3367-3370.
(36) Huang, T. Y.; Kung, C. W.; Liao, Y. T.; Kao, S. Y.; Cheng, M.; Chang, T. H.; Henzie, J.; Alamri, H. R.; Alothman, Z. A.; Yamauchi, Y.; et al. Enhanced charge collection in MOF-525-PEDOT nanotube composites enable highly sensitive biosensing. Advanced Science 2017, 4 (11), 1700261.
(37) Le Ouay, B.; Boudot, M.; Kitao, T.; Yanagida, T.; Kitagawa, S.; Uemura, T. Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. Journal of the American Chemical Society 2016, 138 (32), 10088-10091.
(38) Salcedo-Abraira, P.; Santiago-Portillo, A.; Atienzar, P.; Bordet, P.; Salles, F.; Guillou, N.; Elkaim, E.; Garcia, H.; Navalon, S.; Horcajada, P. A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe). Dalton Transactions 2019, 48 (26), 9807-9817.
(39) Dhara, B.; Nagarkar, S. S.; Kumar, J.; Kumar, V.; Jha, P. K.; Ghosh, S. K.; Nair, S.; Ballav, N. Increase in electrical conductivity of MOF to billion-fold upon filling the nanochannels with conducting polymer. The Journal of Physical Chemistry Letters 2016, 7 (15), 2945-2950.
(40) Xu, X.; Tang, J.; Qian, H.; Hou, S.; Bando, Y.; Hossain, M. S. A.; Pan, L.; Yamauchi, Y. Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (44), 38737-38744.
(41) Yuk, H.; Lu, B.; Lin, S.; Qu, K.; Xu, J.; Luo, J.; Zhao, X. 3D printing of conducting polymers. Nature Communications 2020, 11 (1), 1604.
(42) Rivnay, J.; Inal, S.; Collins, B. A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D. M.; Malliaras, G. G. Structural control of mixed ionic and electronic transport in conducting polymers. Nature Communications 2016, 7, 11287.
(43) Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Advanced Electronic Materials 2015, 1 (4).
(44) Manjakkal, L.; Pullanchiyodan, A.; Yogeswaran, N.; Hosseini, E. S.; Dahiya, R. A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte. Advanced Materials 2020, 32 (24), e1907254.
(45) Wen, Y.; Xu, J. Scientific importance of water‐processable PEDOT–PSS and preparation, challenge and new application in sensors of its film electrode: a review. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (7), 1121-1150.
(46) Xin, X.; Yu, J.; Gao, N.; Xue, Z.; Zhang, W.; Xu, J.; Chen, S. Freeze‐drying and mechanical redispersion of aqueous PEDOT:PSS. Journal of Applied Polymer Science 2020, 138 (5), 258-265.
(47) Zhang, H.; Cooper, A. I. Aligned porous structures by directional freezing. Advanced Materials 2007, 19 (11), 1529-1533.
(48) Shao, G.; Hanaor, D. A. H.; Shen, X.; Gurlo, A. Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Advanced Materials 2020, 32 (17), e1907176.
(49) Hill, I. M.; Hernandez, V.; Xu, B.; Piceno, J. A.; Misiaszek, J.; Giglio, A.; Junez, E.; Chen, J.; Ashby, P. D.; Jordan, R. S.; Wang, Y. Imparting high conductivity to 3D printed PEDOT:PSS. ACS Applied Polymer Materials 2023, 5 (6), 3989-3998.
(50) Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. Pure PEDOT:PSS hydrogels. Nature Communications 2019, 10 (1), 1043.
(51) Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mulhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews 2017, 117 (15), 10212-10290.
(52) Khorsandi, D.; Fahimipour, A.; Abasian, P.; Saber, S. S.; Seyedi, M.; Ghanavati, S.; Ahmad, A.; De Stephanis, A. A.; Taghavinezhaddilami, F.; Leonova, A.; et al. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomaterialia 2021, 122, 26-49.
(53) Kang, B.; Hyeon, J.; So, H. Facile microfabrication of 3-dimensional (3D) hydrophobic polymer surfaces using 3D printing technology. Applied Surface Science 2020, 499.
(54) Pal, S.; Su, Y. Z.; Chen, Y. W.; Yu, C. H.; Kung, C. W.; Yu, S. S. 3D printing of metal-organic framework-based ionogels: wearable sensors with colorimetric and mechanical responses. ACS Applied Materials & Interfaces 2022, 14 (24), 28247-28257.
(55) Vaezi, M.; Seitz, H.; Yang, S. A review on 3D micro-additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology 2012, 67 (5-8), 1721-1754.
(56) Mohamed, O. A.; Masood, S. H.; Bhowmik, J. L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing 2015, 3 (1), 42-53.
(57) Farahani, R. D.; Dube, M.; Therriault, D. Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Advanced Materials 2016, 28 (28), 5794-5821.
(58) Huang, C. W.; Wen, S. C.; Hsiao, C. H.; Zhang, C. Z.; Lin, K. C.; Yu, S. S. Digital light processing of soft robotic gripper with high toughness and self‐healing capability achieved by deep eutectic solvents. Advanced Functional Materials 2024, 34 (24), 2314101.
(59) Jungst, T.; Smolan, W.; Schacht, K.; Scheibel, T.; Groll, J. Strategies and molecular design criteria for 3D printable hydrogels. Chemical Reviews 2016, 116 (3), 1496-1539.
(60) Lai, C. W.; Yu, S. S. 3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. ACS Applied Materials & Interfaces 2020, 12 (30), 34235-34244.
(61) Saadi, M.; Maguire, A.; Pottackal, N. T.; Thakur, M. S. H.; Ikram, M. M.; Hart, A. J.; Ajayan, P. M.; Rahman, M. M. Direct ink writing: a 3D printing technology for diverse materials. Advanced Materials 2022, 34 (28), e2108855.
(62) Lewis, J. A. Direct ink writing of 3D functional materials. Advanced Functional Materials 2006, 16 (17), 2193-2204.
(63) Siqueira, G.; Kokkinis, D.; Libanori, R.; Hausmann, M. K.; Gladman, A. S.; Neels, A.; Tingaut, P.; Zimmermann, T.; Lewis, J. A.; Studart, A. R. Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Advanced Functional Materials 2017, 27 (12), 1604619.
(64) Capadona, J. R.; Van Den Berg, O.; Capadona, L. A.; Schroeter, M.; Rowan, S. J.; Tyler, D. J.; Weder, C. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology 2007, 2 (12), 765-769.
(65) Ren, Z. F.; Lin, K. Y.; Yu, S. S. The effect of temperature and shear on the gelation of cellulose nanocrystals in deep eutectic solvents. Biomacromolecules 2024, 25 (1), 248-257.
(66) Lai, P. C.; Yu, S. S. Cationic cellulose nanocrystals-based nanocomposite hydrogels: achieving 3D printable capacitive sensors with high transparency and mechanical strength. Polymers (Basel) 2021, 13 (5).
(67) Kearns, E. R.; Gillespie, R.; D'Alessandro, D. M. 3D printing of metal–organic framework composite materials for clean energy and environmental applications. Journal of Materials Chemistry A 2021, 9 (48), 27252-27270.
(68) Mallakpour, S.; Azadi, E.; Hussain, C. M. MOF/COF-based materials using 3D printing technology: applications in water treatment, gas removal, biomedical, and electronic industries. New Journal of Chemistry 2021, 45 (30), 13247-13257.
(69) Liu, W.; Erol, O.; Gracias, D. H. 3D Printing of an in situ grown MOF hydrogel with tunable mechanical properties. ACS Appl Mater Interfaces 2020, 12 (29), 33267-33275.
(70) Lawson, S.; Alwakwak, A. A.; Rownaghi, A. A.; Rezaei, F. Gel-print-grow: a new way of 3D printing metal-organic frameworks. ACS Applied Materials & Interfaces 2020, 12 (50), 56108-56117.
(71) Lim, G. J. H.; Wu, Y.; Shah, B. B.; Koh, J. J.; Liu, C. K.; Zhao, D.; Cheetham, A. K.; Wang, J.; Ding, J. 3D-printing of pure metal–organic framework monoliths. ACS Materials Letters 2019, 1 (1), 147-153.
(72) Evans, K. A.; Kennedy, Z. C.; Arey, B. W.; Christ, J. F.; Schaef, H. T.; Nune, S. K.; Erikson, R. L. Chemically active, porous 3D-printed thermoplastic composites. ACS Applied Materials & Interfaces 2018, 10 (17), 15112-15121.
(73) Kim, J. O.; Kim, J. Y.; Lee, J. C.; Park, S.; Moon, H. R.; Kim, D. P. Versatile processing of metal-organic framework-fluoropolymer composite inks with chemical resistance and sensor applications. ACS Applied Materials & Interfaces 2019, 11 (4), 4385-4392.
(74) Dhainaut, J.; Bonneau, M.; Ueoka, R.; Kanamori, K.; Furukawa, S. Formulation of metal-organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation. ACS Applied Materials & Interfaces 2020, 12 (9), 10983-10992.
(75) Zhang, L.; Shi, X.; Zhang, Z.; Kuchel, R. P.; Namivandi-Zangeneh, R.; Corrigan, N.; Jung, K.; Liang, K.; Boyer, C. Porphyrinic zirconium metal-organic frameworks (MOFs) as heterogeneous photocatalysts for PET-RAFT polymerization and stereolithography. Angewandte Chemie International Edition 2021, 60 (10), 5489-5496.
(76) Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 2015, 6 (2), 105-121.
(77) Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. International Journal of Pharmaceutics 2020, 573, 118803.
(78) Yang, C.; Suo, Z. Hydrogel ionotronics. Nature Reviews Materials 2018, 3 (6), 125-142.
(79) Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics: review. Journal of Materials Science: Materials in Medicine 2020, 31 (6), 50.
(80) Mu, R.; Liu, B.; Chen, X.; Wang, N.; Yang, J. Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection. Environmental Technology & Innovation 2020, 20, 101107.
(81) Billiet, T.; Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012, 33 (26), 6020-6041.
(82) Yan, C. C.; Li, W.; Liu, Z.; Zheng, S.; Hu, Y.; Zhou, Y.; Guo, J.; Ou, X.; Li, Q.; Yu, J.; et al. Ionogels: preparation, properties and applications. Advanced Functional Materials 2023, 34 (17), 2314408.
(83) Le Bideau, J.; Viau, L.; Vioux, A. Ionogels, ionic liquid based hybrid materials. Chemical Society Reviews 2011, 40 (2), 907-925.
(84) Angell, C. A.; Ansari, Y.; Zhao, Z. Ionic liquids: past, present and future. Faraday Discuss 2012, 154, 9-27; discussion 81-96, 465-471.
(85) Chen, N.; Zhang, H.; Li, L.; Chen, R.; Guo, S. Ionogel electrolytes for high‐performance lithium batteries: A review. Advanced Energy Materials 2018, 8 (12), 1702675.
(86) Liu, X.; Taiwo, O. O.; Yin, C.; Ouyang, M.; Chowdhury, R.; Wang, B.; Wang, H.; Wu, B.; Brandon, N. P.; Wang, Q.; Cooper, S. J. Aligned ionogel electrolytes for high-temperature supercapacitors. Advanced Science 2019, 6 (5), 1801337.
(87) Zhang, L.; Jiang, D.; Dong, T.; Das, R.; Pan, D.; Sun, C.; Wu, Z.; Zhang, Q.; Liu, C.; Guo, Z. Overview of ionogels in flexible electronics. The Chemical Record 2020, 20 (9), 948-967.
(88) Niu, C.; An, L.; Zhang, H. Mechanically robust, antifatigue, and temperature-tolerant nanocomposite ionogels enabled by hydrogen bonding as wearable sensors. ACS Applied Polymer Materials 2022, 4 (6), 4189-4198.
(89) Liu, Y.; Friesen, J. B.; McAlpine, J. B.; Lankin, D. C.; Chen, S. N.; Pauli, G. F. Natural deep eutectic solvents: properties, applications, and perspectives. Journal of Natural Products 2018, 81 (3), 679-690.
(90) Pham, T. P.; Cho, C. W.; Yun, Y. S. Environmental fate and toxicity of ionic liquids: a review. Water Research 2010, 44 (2), 352-372.
(91) Svigelj, R.; Dossi, N.; Grazioli, C.; Toniolo, R. Deep eutectic solvents (DESs) and their application in biosensor development. Sensors (Basel) 2021, 21 (13).
(92) Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chemical Reviews 2014, 114 (21), 11060-11082.
(93) Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Deep eutectic solvents: A review of fundamentals and applications. Chemical Reviews 2021, 121 (3), 1232-1285.
(94) Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; Kim, J. Wearable sensors: modalities, challenges, and prospects. Lab on a Chip 2018, 18 (2), 217-248.
(95) Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Advanced Materials 2020, 32 (15), e1901924.
(96) Zhang, D.; Zhang, Y.; Lu, W.; Le, X.; Li, P.; Huang, L.; Zhang, J.; Yang, J.; Serpe, M. J.; Chen, D.; Chen, T. Fluorescent hydrogel‐coated paper/textile as flexible chemosensor for visual and wearable mercury(II) detection. Advanced Materials Technologies 2018, 4 (1).
(97) Tran, H.; Feig, V. R.; Liu, K.; Zheng, Y.; Bao, Z. Polymer chemistries underpinning materials for skin-inspired electronics. Macromolecules 2019, 52 (11), 3965-3974.
(98) Wang, F.; Chen, J.; Cui, X.; Liu, X.; Chang, X.; Zhu, Y. Wearable ionogel-based fibers for strain sensors with ultrawide linear response and temperature sensors insensitive to strain. ACS Applied Materials & Interfaces 2022, 14 (26), 30268-30278.
(99) Kung, C. W.; Chang, T. H.; Chou, L. Y.; Hupp, J. T.; Farha, O. K.; Ho, K. C. Post metalation of solvothermally grown electroactive porphyrin metal-organic framework thin films. Chemical Communications 2015, 51 (12), 2414-2417.
(100) Shen, C. H.; Chuang, C. H.; Gu, Y. J.; Ho, W. H.; Song, Y. D.; Chen, Y. C.; Wang, Y. C.; Kung, C. W. Cerium-Based Metal-Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS Appl Mater Interfaces 2021, 13 (14), 16418-16426.
(101) Mondloch, J. E.; Katz, M. J.; Planas, N.; Semrouni, D.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. Are Zr(6)-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications 2014, 50 (64), 8944-8946.
(102) Morris, W.; Volosskiy, B.; Demir, S.; Gandara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorganic Chemistry 2012, 51 (12), 6443-6445.
(103) Peng, E.; Zhang, D.; Ding, J. Ceramic robocasting: recent achievements, potential, and future developments. Advanced Materials 2018, 30 (47), 1802404.
(104) Chen, Q.; Chen, H.; Zhu, L.; Zheng, J. Fundamentals of double network hydrogels. Journal of Materials Chemistry B 2015, 3 (18), 3654-3676.
(105) Zhang, D.; Ren, B.; Zhang, Y.; Xu, L.; Huang, Q.; He, Y.; Li, X.; Wu, J.; Yang, J.; Chen, Q.; et al. From design to applications of stimuli-responsive hydrogel strain sensors. Journal of Materials Chemistry B 2020, 8 (16), 3171-3191.
(106) Abbott, A. P.; Capper, G.; Gray, S. Design of improved deep eutectic solvents using hole theory. Chemphyschem 2006, 7 (4), 803-806.
(107) Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews 2012, 41 (21), 7108-7146.
(108) Kataoka, T.; Ishioka, Y.; Mizuhata, M.; Minami, H.; Maruyama, T. Highly conductive ionic-liquid gels prepared with orthogonal double networks of a low-molecular-weight gelator and cross-linked polymer. ACS Applied Materials & Interfaces 2015, 7 (41), 23346-23352.
(109) Chen, Y. C.; Chiang, W. H.; Kurniawan, D.; Yeh, P. C.; Otake, K. I.; Kung, C. W. Impregnation of graphene quantum dots into a metal-organic framework to render increased electrical conductivity and activity for electrochemical sensing. ACS Applied Materials & Interfaces 2019, 11 (38), 35319-35326.
(110) Kolken, H. M. A.; Zadpoor, A. A. Auxetic mechanical metamaterials. RSC Advances 2017, 7 (9), 5111-5129.
(111) Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials 2016, 26 (11), 1678-1698.
(112) Lei, Z.; Wu, P. A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nature Communications 2018, 9 (1), 1134.
(113) Yassin, J. M.; Taddesse, A. M.; Sánchez-Sánchez, M. Room temperature synthesis of high-quality Ce(IV)-based MOFs in water. Microporous and Mesoporous Materials 2021, 324.
(114) Matthew R. DeStefano, T. I., Sergio J. Garibay, Joseph T. Hupp, and Omar K. Farha. Room temperature synthesis of UiO-66 and the thermal modulation of densities of defect sites. Chemistry of materials 2017, 215, 285-293.
(115) Cho, K. Y.; Seo, J. Y.; Kim, H.-J.; Pai, S. J.; Do, X. H.; Yoon, H. G.; Hwang, S. S.; Han, S. S.; Baek, K.-Y. Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: insights into feasibility of Zr(IV)-based metal-organic framework (MOF) catalysts. Applied Catalysis B: Environmental 2019, 245, 635-647.
(116) Crispin, X.; Marciniak, S.; Osikowicz, W.; Zotti, G.; van der Gon, A. W. D.; Louwet, F.; Fahlman, M.; Groenendaal, L.; De Schryver, F.; Salaneck, W. R. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4‐ethylene dioxythiophene)–poly(styrene sulfonate): A photoelectron spectroscopy study. Journal of Polymer Science Part B: Polymer Physics 2003, 41 (21), 2561-2583.
(117) Kung, C. W.; Otake, K.; Buru, C. T.; Goswami, S.; Cui, Y.; Hupp, J. T.; Spokoyny, A. M.; Farha, O. K. Increased electrical conductivity in a mesoporous metal-organic framework featuring metallacarboranes guests. Journal of the American Chemical Society 2018, 140 (11), 3871-3875.
(118) Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical Society Reviews 2011, 40 (3), 1697-1721.
(119) Patrice Simon, Y. G. Materials for electrochemical capacitors. Nature Materials 2008.
(120) Yang, Z.-h.; Cao, J.; Chen, Y.-p.; Li, X.; Xiong, W.-p.; Zhou, Y.-y.; Zhou, C.-y.; Xu, R.; Zhang, Y.-r. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(VI) from aqueous solution. Microporous and Mesoporous Materials 2019, 277, 277-285.
(121) Klet, R. C.; Wang, T. C.; Fernandez, L. E.; Truhlar, D. G.; Hupp, J. T.; Farha, O. K. Synthetic access to atomically dispersed metals in metal–organic frameworks via a combined atomic-layer-deposition-in-MOF and metal-exchange approach. Chemistry of materials 2016, 28 (4), 1213-1219.
(122) Yuan, S.; Chen, Y. P.; Qin, J.; Lu, W.; Wang, X.; Zhang, Q.; Bosch, M.; Liu, T. F.; Lian, X.; Zhou, H. C. Cooperative cluster metalation and ligand migration in zirconium metal-organic frameworks. Angewandte Chemie International Edition 2015, 54 (49), 14696-14700.
(123) Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO(3-x). Nature Materials 2017, 16 (4), 454-460.
(124) Ma, Y.; Ma, Y.; Giuli, G.; Euchner, H.; Groß, A.; Lepore, G. O.; d'Acapito, F.; Geiger, D.; Biskupek, J.; Kaiser, U.; et al. Introducing highly redox-active atomic centers into insertion‐type electrodes for lithium-ion batteries. Advanced Energy Materials 2020, 10 (25), 2000783.
(125) Zhang, Q.; Man, P.; He, B.; Li, C.; Li, Q.; Pan, Z.; Wang, Z.; Yang, J.; Wang, Z.; Zhou, Z.; et al. Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries. Nano Energy 2020, 67, 104212.
(126) Lin, S.; Pineda-Galvan, Y.; Maza, W. A.; Epley, C. C.; Zhu, J.; Kessinger, M. C.; Pushkar, Y.; Morris, A. J. Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film. ChemSusChem 2017, 10 (3), 514-522.