| 研究生: |
王莉琁 WANG, LI-SYUAN |
|---|---|
| 論文名稱: |
以田口方法探討印刷電路板尺寸變化與改善方式 The study of PCB dimensions and improvement by Taguchi Method |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 印刷電路板 、尺寸變化 、壓合製程 、殘銅率 、板厚 、升溫速率 、降溫速率 |
| 外文關鍵詞: | Printed circuit board, dimensional change, llamination process, residual copper rate, plate thickness, heating rate, cooling rate |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
印刷電路板在製程中,往往因複合材料及設計方式而導致尺寸變化不均勻的變形,導致鑽孔不準,影響孔偏及短路問題,為了改善這些問題,需先進行對這些設計的了解,再利用製程調控的方式進行改善。
本論文研究目的在於探討印刷電路板在經過熱壓處理後,產生經緯向的尺寸變化之行為表現,並找出最佳製程參數條件以降低尺寸變化的不均勻性。由於印刷電路板板材為一種含銅之複合材料,在受到高溫高壓下因其熱膨脹係數的不同會產生尺寸變化不均勻狀況。本研究係以板厚、殘銅率以及裁板尺寸等組合先使用全因子實驗找出其設計對變形之趨勢,再以溫度、壓力、升溫速率及降溫速率等壓合製程條件搭配板框設計,並利用田口實驗找出最佳及穩健之製程條件,最後導入實務電路板中,以實際雷射作業進行偏移確認。
透過實驗結果得到殘銅率與板厚設計趨勢對印刷電路板尺寸變化具有負面影響,以及使用板框及降低升溫速率及降溫速率等壓合製程條件有助於降低印刷電路板尺寸變化不均勻狀況。
In the manufacturing process, the printed circuit board is often deformed due to non-uniform dimensional changes, caused by the composite materials and design methods. It will lead to the hole bias and short circuit. To improve these problems, it is necessary to understand these designs and then to explore the adjustment of the process parameters to achieve the improvement. The purpose of this study is first to investigate the behavior of dimensional changes in printed circuit boards after hot-pressing based on the different combinations of the working parameters, board thickness, residual copper ratio, and panel size. Afterwards, the pressing process parameters (temperature, pressure, heating rate, cooling rate), matching up with the frame design, are used to find out their optimal recipe to control the non-uniformity of dimensional changes. Through experimental results, the design trends of residual copper ratio and board thickness have a negative impact on the PCB dimensional change, and the use of the frame design and the lowering of the heating rate and cooling rate, etc., can help reduce the non-uniform dimension change of the printed circuit board.
[1] 陳玉心,增層,多層印刷電路板技術,全華科技圖書股份有限公司,台灣,2001年
[2] 薛雅菁,工業技術與資訊月刊316期,工業技術研究院,台灣,2018年
[3] PCB Shop,“【趨勢專欄】當掌聲響起,如何維持銅箔基板未來的競爭力?”,台灣電路板協會,台灣,2018年
[4] DIGITIMES企劃,“電子產品持續輕薄化 PCB多層板技術更精進”,大椽股份有限公司(科技網),台灣,2016年
[5] Unitech耀華電子全球資訊網,“【印刷電路板】HDI 技術”,Retrieved April 20, 2018, from http://www.pcbut.com.tw/pcb_technology-eng.html
[6] Mohamed, Mansour H, Lienhart, R Bradley, and Gu, Pu, “Base material for a printed circuit board formed from a three-dimensional woven fiber structure”, 2002.
[7] Zhu, Qi, Shrotriya, Pranav, Sottos, Nancy R, and Geubelle, Philippe H, “Three-dimensional viscoelastic simulation of woven composite substrates for multilayer circuit boards”, Composites science and technology, 63(13), 2003.
[8] Nakagawa, Yasutada, and Yokoyama, Ryohei, “Optimum design of printed circuit board to reduce deformation in reflow process by a global optimization method”, Materials and Design, 33, pp. 164-174, 2012.
[9] Minni, Jean-Christophe, Vautrin, Alain, and Henrat, Patrick, “Dimensional stability of multilayer printed circuit boards: Influence of the reinforcement”, École Nationale Supérieure des Mines de Saint-Étienne, pp. 1-194, 2006.
[10] Xu, Peng, Deng, Dan, Liu, Dong, Gao, Tuanfen, Wu, Fengshun, Zhou, Longzao, and Peng, Weihong, “Deformation analysis of Multilayer Board in the lamination process”, Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2010 11th International Conference on, 2010.
[11] Cherouat, Abel, Gong, Xiao-Lu, Sicot, Olivier, and Lu, Jian, “Influence of the residual stresses on the mechanical behavior of advanced composite parts”, Journal of neutron research, 9(2-4), pp. 319-330, 2001.
[12] 黃君偉,“光機電系統設計與製作”,台灣五南圖書出版股份有限公司,pp. 736-740,2015。
[13] 張文賢,“印刷電路板分層研究與設計改善方法”,成功大學工程科學研究所, pp. 1-77, 2009。
[14] Aronhime, Marc T, and Gillham, John K., “Time-temperature-transformation (TTT) cure diagram of thermosetting polymeric systems”, Epoxy Resins and Composites III, pp. 83-113, 1986.
[15] P.K. Mallick, “Fiber reinforced composites”, New York, CRC press, 2007.
[16] Kirchoff, Gf., “Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe”, Journal fur die reine und angewandte Mathematik (Crelle's Journal), 40, pp. 51-88, 1850.
[17] Love, Augustus Edward Hough. , “ A treatise on the mathematical theory of elasticity: Cambridge university press”, 2013.
[18] IIT Kanpur (2012, June 26), Introduction to Classical Plate Theory. NPTEL Composite Materials and Structures(Web). Retrieved April 20, 2018, from http://nptel.ac.in/courses/101104010/16.
[19] 中國工程科技知識中心,Retrieved April 22, 2018, from http://wiki.metal.ckcest.cn/
[20] Yan Ying, “A micromechanical model for elastic behaviour analysis of woven fabric composites”, Chinese Journal of Theoretical and Applied Mechanics, 29(4), pp. 429-438, 1997.
[21] 世新自動機械有限公司,Retrieved June 4, 2018, from http://blog.xuite.net/vertu.mc/profile
[22] Schapery, Richard Allan, “Thermal expansion coefficients of composite materials based on energy principles”, Journal of Composite Materials, 2(3), pp. 380-404. 1968.
[23] Daniel, Isaac M, and Ishai, Ori, “Engineering mechanics of composite materials”, Vol. 3, Oxford university press New York. ,1994.
[24] 李輝煌,“田口方法-品質設計的原理與實務”,高立圖書有限公司,台灣,2004。
[25] Van Belle, Gerald, “Statistical rules of thumb”, Vol. 699, John Wiley and Sons, 2011.
[26] 洪國強,“應用電源層或地層切割及去耦合電容抑制delta-I雜訊”,國立台北科技大學電腦與通訊研究所,2005。
[27] MatWeb, Retrieved April 22, 2018, from http://www.matweb.com/
[28] EMC台光電子材料股份有限公司,Retrieved March 12, 2018, from http://www.emctw.com
[29] FAPRO能麒企業股份有限公司,Retrieved March 12, 2018, from http://www.fapro.com.tw/
[30] MITSUBISHI ELECTRIC, Retrieved March 12, 2018, from http://www.mitsubishielectric.com/
[31] Camtek康代科技股份有限公司,Retrieved March 12, 2018, from http://www.camtek.com/
[32] 李志偉、劉森源、張庭瑞,“材料科學與工程”, 新文京開發出版股份有限公司,台灣,1996。
校內:2023-07-01公開