| 研究生: |
吳柏憲 Wu, Po-Hsien |
|---|---|
| 論文名稱: |
徑向超音波發射器之研製 Development of a Radial-Type Ultrasonic Radiator |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 超音波 、表面機械處理 、有限元素法 、基因演算法 、徑向發射器 |
| 外文關鍵詞: | Ultrasound, Mechanical surface treatment, Finite element method, Genetic algorithm, Radial-type ultrasonic radiator |
| 相關次數: | 點閱:127 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超音波能量的使用日新月異,其在工業上的發展始於藍杰文式壓電換能器的出現,在近期已經成為表面機械處理、超音波萃取與降解等技術的核心,但是限於換能器僅能產生縱向的超音波能量,因此有了不同類型的發射器的研製。本文使用有限元素分析與基因演算法設計一個浸水式超音波發射系統,以特定頻率驅動自製的藍杰文壓電換能器並結合階梯型變幅桿放大能量,再藉由徑向發射器的幾何設計使能量傳遞由縱向轉變成徑向的超音波能量發射,對置於發射器同軸心位置之圓型管件表面產生集中的聲壓場。實驗結果與COMSOL模擬分析顯示,不同的共振頻率能夠產生不同分佈的聲壓場,若是以更高功率之放大器驅動,則可以進一步透過管件表面因空蝕氣泡反覆崩裂時產生的敲擊效應,探討超音波發射系統對材料表面機械處理的效果。
Applications of ultrasonic energy based on Langevin-type transducer have been in progress. Recently, the ultrasonic energy is used by many technologies, including mechanical surface treatment, ultrasonic extraction, ultrasonic degradation, and so on. Because the transducers can only produce longitudinal ultrasonic energy, there are many different developments of ultrasonic radiator. In this research, I employ COMSOL finite element method associated with genetic algorithm to optimize ultrasonic transducer and radial-type radiator and build ultrasonic radiate system in water tank. By driving homemade Langevin-type transducer with specific frequency and utilizing radiator to convert longitudinal energy to radial energy, the ultrasonic radiate system can produce radial and concentric ultrasonic energy to tube surface, which located in the coaxial core of ultrasonic radiator. The results of experiments and COMSOL simulations show that different resonant frequencies can produce various acoustic fields. If driving the ultrasonic radiate system with higher power amplifier, we can investigate the effect of mechanical surface treatment through the peening action of the tube generated by ultrasonic cavitation.
[1]. Benjamin, T. B., & Ellis, A. T. (1966). The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 260(1110), 221-240.
[2]. Chau, K. T., Shi, B., Jing, L., Hu, M. Q., & Fan, Y. (2004, October). A short cylinder ultrasonic motor with novel excitation mode. In Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE (Vol. 1). IEEE.
[3]. Chong, C. P., Chan, H. L., Chan, M. H., & Liu, P. C. K. (2002). Analysis of the resonance modes of PZT/epoxy 1-3 composite rings. In Applications of Ferroelectrics, 2002. ISAF 2002. Proceedings of the 13th IEEE International Symposium on (pp. 295-298). IEEE.
[4]. Yung, C. S., Lo, C. Y., & Or, S. W. (2005, April). A 64 kHz Langevin sandwich transducer fabricated using giant magnetostrictive composites. In INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005. (pp. 1445-1446). IEEE.
[5]. Curtis, S., De los Rios, E. R., Rodopoulos, C. A., & Levers, A. (2003). Analysis of the effects of controlled shot peening on fatigue damage of high strength aluminium alloys. International journal of fatigue, 25(1), 59-66.
[6]. Gallego-Juárez, J. A., Rodriguez, G., Acosta, V., & Riera, E. (2010). Power ultrasonic transducers with extensive radiators for industrial processing. Ultrasonics Sonochemistry, 17(6), 953-964.
[7]. Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: recent developments and prospective advances. Physics Procedia, 3(1), 35-47.
[8]. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison wesley, 1989, 102.
[9]. Kinsler, L. E., Frey, A. R., Coppens, A. B., & Sanders, J. V. (1999). Fundamentals of acoustics. Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999., 560.
[10]. Leighton, T. G. (2007). What is ultrasound?. Progress in biophysics and molecular biology, 93(1), 3-83.
[11]. Li, H. L., Chan, H. L. W., & Choy, C. L. (2001). Vibration characteristics of piezoceramic rings. Ferroelectrics, 263(1), 211-216.
[12]. Lin, S., & Xu, L. (2012). Study on the radial vibration and acoustic field of an isotropic circular ring radiator. Ultrasonics, 52(1), 103-110.
[13]. Lin, S., Xu, L., & Wenxu, H. (2011). A new type of high power composite ultrasonic transducer. Journal of Sound and Vibration, 330(7), 1419-1431.
[14]. Mason, T. J., & Lorimer, J. P. (2002). Applied sonochemistry. The uses of power ultrasound in chemistry and processing, 1-48.
[15]. Mason, W. P. (1976). Sonics and ultrasonics: early history and applications. IEEE Transactions on Sonics and Ultrasonics, 23(4), 224-231.
[16]. Masse, J. E., & Barreau, G. (1995). Laser generation of stress waves in metal. In Shock Waves@ Marseille III (pp. 251-254). Springer Berlin Heidelberg.
[17]. Montross, C. S., Wei, T., Ye, L., Clark, G., & Mai, Y. W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue, 24(10), 1021-1036.
[18]. Odhiambo, D., & Soyama, H. (2003). Cavitation shotless peening for improvement of fatigue strength of carbonized steel. International Journal of Fatigue, 25(9), 1217-1222.
[19]. Patel, I. (2011). Ceramic Based Intelligent Piezoelectric Energy Harvesting Device. INTECH Open Access Publisher.
[20]. Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Beranger, G., & Lemaitre, C. (2000). Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Materials Science and Engineering: A, 280(2), 294-302.
[21]. Peyre, P., Sollier, A., Chaieb, I., Berthe, L., Bartnicki, E., Braham, C., & Fabbro, R. (2003). FEM simulation of residual stresses induced by laser peening. The European Physical Journal Applied Physics, 23(2), 83-88.
[22]. Rayleigh, L. (1917). VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(200), 94-98.
[23]. Richards, W. T., & Loomis, A. L. (1927). The chemical effects of high frequency sound waves I. A preliminary survey. Journal of the American Chemical Society, 49(12), 3086-3100.
[24]. Shuyu, L., Zhiqiang, F., Xiaoli, Z., Yong, W., & Jing, H. (2013). Radial vibration and ultrasonic field of a long tubular ultrasonic radiator. Ultrasonics sonochemistry, 20(5), 1161-1167.
[25]. Soyama, H., Park, J. D., & Saka, M. (2000). Use of cavitating jet for introducing compressive residual stress. Journal of manufacturing science and engineering, 122(1), 83-89.
[26]. Statnikov, E. S., Korolkov, O. V., & Vityazev, V. N. (2006). Physics and mechanism of ultrasonic impact. Ultrasonics, 44, e533-e538.
[27]. Suslick, K. S. (1989). The chemical effects of ultrasound. Scientific American, 260(2), 80-86.
[28]. Toukoniitty, B., Mikkola, J. P., Murzin, D. Y., & Salmi, T. (2005). Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions. Applied Catalysis A: General, 279(1), 1-22.
[29]. Turski, M., Clitheroe, S., Evans, A. D., Rodopoulos, C., Hughes, D. J., & Withers, P. J. (2010). Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments. Applied Physics A, 99(3), 549-556.
[30]. Xu, L., Lin, S., & Hu, W. (2011). Optimization design of high power ultrasonic circular ring radiator in coupled vibration. Ultrasonics, 51(7), 815-823.
[31]. 周卓明. (2003). 壓電力學: 全華科技圖書股份有限公司.
[32]. 陳偉哲. (2014). 圓環型超音波發射器之研製. 成功大學機械工程學系學位論文, 1-84.