簡易檢索 / 詳目顯示

研究生: 黃冠智
Huang, Guan-Zhi
論文名稱: 光輔助電鍍鎳鉬於n型砷化鎵上作為光陽極之光電化學水分解特性分析
The study of photoelectrochemical water splitting using n-GaAs decorated with NiMo as the photoanodes.
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 131
中文關鍵詞: 光電化學砷化鎵光腐蝕腐蝕電位鎳鉬催化劑
外文關鍵詞: Photoelectrochemical, GaAs, photo-corrosion, corrosion potential, NiMo
相關次數: 點閱:127下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用n型砷化鎵半導體,為一個小能隙的半導體,理論上能吸收大部分的太陽能能量,在透過施加偏壓調整能帶相對於水氧化電位的位置後,能有效的將太陽能轉換至化學能。但以n型砷化鎵為光電陽極下極易腐蝕,如何將砷化鎵表面的光生電洞送至電解液便至關重要。

    因此本篇論文的研究方向是先分析砷化鎵在中性 (0.1M Na2SO4)、鹼性(0.1M KOH)電解液中的特性。了解其腐蝕機制、腐蝕電位和腐蝕產物,藉此分析如何有效抑制腐蝕並同時進行水分解。而後在光輔助電鍍NiMo催化劑修飾砷化鎵表面,進而提升水氧化能力並抑制光腐蝕。

    關鍵詞:光電化學、砷化鎵、光腐蝕、腐蝕電位、鎳鉬催化劑

    Gallium arsenide(GaAs) has a suitable bandgap (1.43 eV) for spectrum absorption. In addition, it can also provide some photovoltaic which reduces the overvoltage of water splitting. However, photo-corrosion occurs when the holes are accumulated at gallium arsenide surface. It causes either decomposition or the formation of an insulating oxide layer in different electrolyte. In this study, we divided our research into two parts. First, we attempted to clarify the corrosion mechanism of bare n-GaAs in neutral and alkaline electrolyte. Next, we grew NiMo catalyst on the surface of n-GaAs by photo-assisted electrodeposition to improve the performance in PEC. We observed that GaAs with NiMo photoanodes could inhibit photo-corrosion and reduce overvoltage in solar water splitting reactions. In catalyst optimization research, we found that NiMo catalyst provides good OER enhancement. Furthermore, after NiMo catalyst is annealed under oxygen, it has the better OER ability because NiMo is completely oxidized. Stability tests had shown that the NiMo catalyst can enhance its oxygen Faraday’s efficiency in some degree. This means that NiMo catalyst can increase water oxidation current and inhibit semiconductor corrosion to a certain degree. However, it is still necessary to further improve the uniformity of the catalyst from exposing to the electrolyte.

    摘要 I 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 前言 1 1.1研究背景 1 1.2研究動機和目的 2 1.3 論文大綱 3 1-4研究背景與重要性(文獻回顧) 4 第二章 原理 9 2.1基礎理論 9 2.1.1水分解反應 9 2.1.2 定義半導體費米能階 10 2.1.3定義電解液氧化還原電位 11 2.1.4液半界面 12 2.1.5液半界面電場分布 15 2.1.6載子動力學 17 2.1.7光腐蝕原理 18 2.1.8電催化劑(electrocatalysts) 20 2.2光電化學系統介紹 22 2.2.1.光電化學系統運作原理 22 2.2.2 光電化學系統量測裝置 24 2.2.3轉換效率 28 2.3 半導體材料選擇 30 2.3.1 半導體光催化特性(photocatalytic) 30 2.3.2直接能隙半導體 33 2.3.3半導體合適的能帶位置 34 2.4實驗儀器與藥品 35 2.4.1實驗儀器 35 2.4.2實驗藥品 36 第三章 探討砷化鎵 37 3.1前言 37 3.2砷化鎵試片製程步驟 37 3.3 砷化鎵中性溶液(Na2SO4)下腐蝕分析 40 3.3.1 光電化學系統量測裝置介紹與實驗條件 40 3.3.2實驗步驟和分析手法 42 3.3.3 LSV曲線初步分析 43 3.3.4長時間穩定性量測: 45 3.3.5阻抗圖譜量測 47 3.3.6α-step蝕刻厚度分析 50 3.3.7表面形貌分析(SEM/OM) 51 3.3.8 XPS元素分析 57 3.3.9中性溶液腐蝕分析結論 64 3.4砷化鎵鹼性溶液(KOH)下腐蝕分析 65 3.4.1 光電化學系統量測裝置介紹與實驗條件 65 3.4.2.長時間穩定性量測 66 3.4.3 α-step蝕刻厚度分析 67 3.4.4表面形貌分析(SEM/OM) 68 3.4.5 XPS元素分析 72 3.4.6腐蝕電位亮態CV分析 76 3.4.7腐蝕電位能帶圖分析 78 3.4.8鹼性腐蝕分析結論 81 第四章 探討鎳鉬催化劑 82 4.1鎳鉬催化劑成長製程 82 4.1.1光輔助電沉積NiMo助催化劑製程 82 4.1.2NiMo退火製程 83 4.2 鎳鉬薄膜催化能力分析 84 4.2.1實驗步驟和分析手法 84 4.2.2定電流光輔助電鍍 85 4.2.3 NiMo退火 91 4.3.鹼性溶液中以NiMo為n-GaAs保護層光電化學特性 94 4.3.1暗態下CV量測 94 4.3.2開路電位量測 98 4.3.3阻抗圖譜量測 101 4.3.4塔佛曲線量測 105 4.3.5電流對電壓圖量測 109 4.3.6循環伏安法量測(照光) 112 4.3.7長時間穩定性量測 113 4.4 Pec實驗後分析 115 4.4.1 SEM 115 4.4.2 XPS元素分析 119 4.5 氣體收集 125 第五章 結論與未來規劃 125 5.1結論 125 5.2參考文獻 127 表目錄 表2- 1 、不同參考電極中的座標換算[22] 27 表2- 2、實驗儀器 35 表3- 1、GaAs在中性溶液中腐蝕厚度 50 表3- 2、As 3d軌域XPS fitting (a)實驗前GaAs、(b)實驗後GaAs_ increasing current、(c) 實驗後GaAs_ low current。 62 表3- 3、Ga 3d軌域XPS fitting (a)實驗前GaAs、(b) 實驗後 GaAs_increasing current、(c) 實驗後GaAs_ low current。 63 表3- 4、GaAs在鹼性溶液中腐蝕厚度 67 表3- 5、As 3d軌域XPS fitting (a)實驗前GaAs、(b)實驗後GaAs_ brown、(c) 實驗後GaAs_blue。 74 表3- 6、Ga 3d軌域XPS fitting (a)實驗前GaAs、(b)實驗後GaAs_ brown、(c) 實驗後GaAs_blue。 75 表3- 7、第二個氧化包中掃秒速度與氧化峰值電流關係 錯誤! 尚未定義書籤。 表4- 1、擬和交換電流值 107 表4- 2、Ni 2p軌域xps分析(a)實驗前NiMo、(b) 實驗前NiMo anneal、(e)實驗後NiMo、(f)實驗後 NiMo anneal 121 表4- 3 、Mo 3d軌域xps分析(a)實驗前NiMo、(b) 實驗前NiMo anneal、(e)實驗後NiMo、(f)實驗後 NiMo anneal 124   圖目錄 圖1- 1、各國廢除燃油汽車目標時間 1 圖1- 2、PC、PEC、PV-EC介紹示意圖[6] 5 圖1- 3、最早以TiO2半導體進行光電化學電解水[8] 7 圖2- 1、(a)水氧化反應機制、(b)水氧化四步驟反應在熱力學中均為上坡反應 9 圖2- 2、(a)本質半導體(b) N型半導體(c) P型半導體,能帶圖與費米能階位置。 10 圖2- 3、(左) 帶電離子的電場影響水偶極的排列;(右) 極化能分裂氧化(Eox)和還原(Ered)的電位, (Eredox)為「氧化還原電位」。[20] 11 圖2- 4、暗態下半導體與電解液(a)接觸前(b)接觸後能帶彎曲變化[21] 12 圖2- 5、液半界面(b)相接、(c)照光、(d)施加外部偏壓。[25] 14 圖2- 6、(左)n型半導體液半界面電場分布和距離。(右) n型半導體液半界面表面離子吸附 16 圖2- 7、半導體內光生載子分離限制 17 圖2- 8、ϕox為光電陽極的氧化電位,ϕre為光電陰極的還原電位。(能帶圖中上方電位為負)[26] 19 圖2- 9、助催化劑使水氧化反應所需活化能下降(圖A);助催化劑幫助過電位提前,飽和電流上升(圖B)[28] 21 圖2- 10、較佳的助催化劑可以幫助過電位提前更多,暗態中電解水理論最低起始電位為1.23eV vs.RHE;亮態中有半導體提供光催化效果,故起始電位可早於1.23eV vs.RHE。[29] 21 圖2- 11、簡述光電化學反應系統[7] 23 圖2- 12、雙電極示意圖 25 圖2- 13、三電極是意圖 25 圖2- 14、(左)AM1.5G模擬太陽能光譜、(右) 砷化鎵理論最大轉換效率 30 圖2- 15、半導體能帶位置需跨越水的氧化和還原能階[30] 31 圖2- 16、陽極和陰極均為可吸收光源的半導體,均貢獻光偏壓(Vph)。[31] 32 圖2- 17、陽極和陰極均為可吸收光源的半導體,均貢獻光偏壓(Vph)(左圖); 32 圖2- 18、直接能隙半導體(左);間接能隙半導體(右) 33 圖2- 19、半導體能帶位置和腐蝕電位位置 34 圖3- 1、試片設計圖 39 圖3- 2、移除原生氧化層 39 圖3- 3、光電化學實驗前試片前處理 39 圖3- 4、中性溶液中三電極系統 41 圖3- 5、以GaAs_sample_1進行重複三次,亮態下電流電壓曲線圖量測。電流隨掃描次數而下降。 44 圖3- 6、以GaAs_sample_2進行重複五次,亮態下電流電壓曲線圖量測。前三次掃描因為尚未觀察到飽和電流,故施加到更大的偏壓。電流隨隨掃描次數而上升。 44 圖3- 7、GaAs sample_1和GaAs sample_1長時間穩定性量測 46 圖3- 8、(a)穩定性量測前的Nyquist plot、(b)GaAs_ increasing current)模擬電路圖、(c) GaAs_ low current模擬電路圖 48 圖3- 9、(a)穩定性量測後的Nyquist plot、(b) GaAs_ increasing current模擬電路圖、(c) GaAs_ low current模擬電路圖 49 圖3- 10、α-step測量位置示意圖 50 圖3- 11、SEM不同放大倍率下GaAs_ increasing current的表面形貌(a)100K(b)50K(c)10K 53 圖3- 12、OM不同放大倍率GaAs_ increasing current的表面形貌(a)物鏡放大5倍(b) 物鏡放大20倍 53 圖3- 13、SEM放大倍率100K下GaAs_ increasing current不同位置的剖面圖(a)位置一、(b)位置二。 54 圖3- 14、SEM放大倍率1K下GaAs_ increasing current不同位置的剖面圖(a)位置一、(b)位置二、(c)位置三。 54 圖3- 15、SEM不同放大倍率下GaAs_ low current的表面形貌(a)100K(b)50K(c)10K 55 圖3- 16、、OM不同放大倍率GaAs_ low current的表面形貌(a)物鏡放大5倍(b) 物鏡放大20倍 55 圖3- 17、、SEM放大倍率100K下GaAs_ low current不同位置的剖面圖 56 圖3- 18、SEM放大倍率1K下GaAs_ low current不同位置的剖面圖(a)位置一、(b)位置二、(c)位置三(d)位置四。 56 圖3- 19、中性溶液下XPS全頻譜量測 57 圖3- 20、中性溶液O1s軌域XPS量測 60 圖3- 21、中性溶液As 3d軌域XPS量測 60 圖3- 22、中性溶液Ga 3d軌域XPS量測 60 圖3- 23、中性溶液下XPS量測(a)GaAs實驗前、(c、d)GaAs_ increasing current實驗後、(e、f) GaAs_ low current實驗後。 61 圖3- 24、25度下,Ga相關元素的pH-電位圖 63 圖3- 25、鹼性溶液中三電極系統 65 圖3- 26、鹼性溶液(0.1M KOH)下GaAs三電極穩定性量測 66 圖3- 27、鹼性溶液(0.1M KOH)下GaAs三電極穩定性量測中表面形貌變化 66 圖3- 28、α-step測量位置示意圖 67 圖3- 29、GaAs_brown不同倍率的SEM表面形貌 69 圖3- 30、GaAs_brown不同倍率的SEM剖面圖 69 圖3- 31、GaAs_blue不同倍率的SEM表面形貌 70 圖3- 32、GaAs_blue不同倍率的SEM剖面圖 70 圖3- 33、GaAs_brown不同倍率的OM圖(a)物鏡5倍放大、(b) 物鏡50倍放大。 71 圖3- 34、GaAs_blue不同倍率的OM圖(a)物鏡5倍放大、(b) 物鏡50倍放大。 71 圖3- 35、鹼性溶液下XPS量測(a)GaAs實驗前、(c、d)GaAs_ brown、(e、f) GaAs_blue。 73 圖3- 36、0.1M KOH、照光(100mW)下n-GaAs在掃秒速度50mV-1的CV圖 76 圖3- 37、0.1M KOH、照光(100mW)下n-GaAs在不同掃秒速度的CV圖。 76 圖3- 38、掃秒速度正比於氧化峰值電流 錯誤! 尚未定義書籤。 圖3- 39、n-GaAs(左) mott schottky擬合平帶電位、(右)OCP開路電位值。 79 圖3- 40、n-GaAs腐蝕電位值 79 圖3- 41、n-GaAs和電解液液半界面(左)平衡前(右) 暗態下平衡 80 圖3- 42、n-GaAs和電解液液半界面(左)暗態下平衡右) 亮態下平衡 80 圖4- 1、GaAs經退火後TLM量測 83 圖4- 2、-10mA下定電流電鍍試片命名,XX為成長時間 85 圖4- 3、定電流電鍍參數 86 圖4- 4、定電流不同成長時間NiMo試片暗態LSV,催化能力隨成長時間而增加。 86 圖4- 5、不同成長時間下SEM表面形貌(a、b)10s、(c、d)75s、(e、f_)150s。 88 圖4- 6、不同成長時間下SEM剖面圖(a、b)10s、(c、d)75s、(e、f_)150s。 89 圖4- 7、NiMo退火試片命名 91 圖4- 8、GaAs_NiMo SEM表面形貌(a)100K、(b)50K、(c)10K 92 圖4- 9、GaAs_NiMo anneal SEM表面形貌(a)100K、(b)50K、(c)10K 92 圖4- 10 93 圖4- 11 93 圖4- 12、長時間前CV圖,暗態、掃描速度50mV s-1 94 圖4- 13、長時間前GaAs_NiMo anneal局部慢速掃描CV圖,暗態、掃描速度5mV s-1 95 圖4- 14、長時間後CV圖,暗態、掃描速度50mV s-1 96 圖4- 15、長時間後GaAs_NiMo anneal局部慢速掃描CV圖,暗態、掃描速度5mV s-1 97 圖4- 16、,Ni相關元素的pH-電位圖 97 圖4- 17、穩定性量測前,照光/不照光下OCP值 100 圖4- 18、穩定性量測後,照光/不照光下OCP值 100 圖實驗4- 19、穩定性量測前阻抗圖 102 圖4- 20、實驗前阻抗模擬圖(左)GaAs、(右)GaAs_NiMo anneal。 102 圖4- 21、穩定性量測後阻抗圖 103 圖4- 22、實驗後GaAs阻抗模擬圖 103 圖4- 23、(a、c、e)穩定性量測前Tafel;(b、d、f)穩定性量測後Tafel 108 圖4- 24、暗態LSV (左) 穩定性量測後前(右)穩定性量測後 109 圖4- 25、亮態LSV (左) 穩定性量測後前(右)穩定性量測後 111 圖4- 26、開路電位範圍局部放大LSV(左)實驗前、(右)實驗後 111 圖4- 27、亮態下CV,掃描速度50mV s-1。(左)穩定性量測前、(右)穩定性量測後。 112 圖4- 28、穩定性量測 114 圖4- 29、穩定性量測(a)0s、(b)500s、(c)1000s、(d)1500s、(e)2000s 114 圖4- 30、穩定性量測(a)500s、(b)800s、(c)1000s、(d)1500s、(e)2000s 114 圖4- 31、穩定性量測(a) 500s、(b)1000s、(c)1500s、(d)2000s 114 圖4- 32、實驗後GaAs表面形貌(a)100K(b)50K(c)10K 115 圖4- 33、實驗後GaAs剖面圖(a)100K(b)30K 115 圖4- 34、實驗後GaAs_NiMo表面形貌(a)100K(b)50K(c)10K 116 圖4- 35、實驗後GaAs_NiMo剖面圖(a)100K(b)30K 116 圖4- 36、實驗後GaAs_NiMo anneal材料未脫落處表面形貌(a)100K(b)50K(c)10K 117 圖4- 37、實驗後GaAs_NiMo anneal材料脫落處表面形貌(a)100K(b)50K(c)10K 118 圖4- 38、實驗後GaAs_NiMo anneal剖面圖(a)100K(b)30K 118 圖4- 39、Ni2p軌域XPS分析(a、b)實驗前NiMo、NiMo anneal;(c、d)實驗後脫落區域NiMo、NiMo anneal;(e、f) 實驗後保留區域NiMo、NiMo anneal 120 圖4- 40、Mo 3d軌域XPS分析(a、b)實驗前NiMo、NiMo anneal;(c、d)實驗後脫落區域NiMo、NiMo anneal;(e、f) 實驗後保留區域NiMo、NiMo anneal 123

    [1] P. Agreement, "Paris agreement," in Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris). Retrived December, 2015, vol. 4: HeinOnline, p. 2017.
    [2] A. Körner, C. Tam, S. Bennett, and J. Gagné, "Technology roadmap-hydrogen and fuel cells," International Energy Agency (IEA): Paris, France, 2015.
    [3] H. Gerischer, "Über den Mechanismus der anodischen Auflösung von Galliumarsenid," Berichte der Bunsengesellschaft für physikalische Chemie, vol. 69, no. 7, pp. 578-583, 1965.
    [4] C. Acar and I. Dincer, "Impact assessment and efficiency evaluation of hydrogen production methods," International journal of energy research, vol. 39, no. 13, pp. 1757-1768, 2015.
    [5] M. Ahmed and I. Dincer, "A review on photoelectrochemical hydrogen production systems: challenges and future directions," International Journal of Hydrogen Energy, vol. 44, no. 5, pp. 2474-2507, 2019.
    [6] J. H. Kim, D. Hansora, P. Sharma, J.-W. Jang, and J. S. Lee, "Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge," Chemical Society Reviews, vol. 48, no. 7, pp. 1908-1971, 2019.
    [7] S. Hu, C. Xiang, S. Haussener, A. D. Berger, and N. S. Lewis, "An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems," Energy & Environmental Science, vol. 6, no. 10, pp. 2984-2993, 2013.
    [8] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," nature, vol. 238, no. 5358, pp. 37-38, 1972.
    [9] A. Fujishima, K. Kohayakawa, and K. Honda, "Hydrogen production under sunlight with an electrochemical photocell," Journal of the Electrochemical Society, vol. 122, no. 11, p. 1487, 1975.
    [10] M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, Houston, TX," 2nd English edn, pp. 384-392, 1974.
    [11] S. Menezes, A. Heller, and B. Miller, "Metal Filmed‐Semiconductor Photoelectrochemical Cells," Journal of the Electrochemical Society, vol. 127, no. 6, p. 1268, 1980.
    [12] K. Frese Jr, M. Madou, and S. Morrison, "Investigation of Photoelectrochemical Corrosion of Semiconductors: III. Effects of Metal Layer on Stability of," Journal of the Electrochemical Society, vol. 128, no. 9, p. 1939, 1981.
    [13] P. Allongue, E. Souteyrand, and L. Allemand, "Charge transfer process at illuminated semiconductor/electrolyte junctions modified by electrodeposition of microscopic metal grain," Journal of the Electrochemical Society, vol. 136, no. 4, p. 1027, 1989.
    [14] S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, "Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation," Science, vol. 344, no. 6187, pp. 1005-1009, 2014.
    [15] E. Verlage et al., "A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO 2 films," Energy & Environmental Science, vol. 8, no. 11, pp. 3166-3172, 2015.
    [16] E. Verney, J. Martin, N. Jaffrezic-Renault, and P. Clechet, "Photoelectrochemical and chemical corrosion inhibition of n-type GaAs in highly concentrated iodide solutions," Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 209, no. 1, pp. 219-222, 1986.
    [17] P. Allongue, H. Cachet, P. Clechet, M. Froment, J. Martin, and E. Verney, "Stabilization of n‐GaAs in Acidic Concentrated Iodide Electrolytes," Journal of the Electrochemical Society, vol. 134, no. 3, p. 620, 1987.
    [18] C. Hu, L. Zhang, and J. Gong, "Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting," Energy & Environmental Science, vol. 12, no. 9, pp. 2620-2645, 2019.
    [19] J. Hou, Y. Wu, B. Zhang, S. Cao, Z. Li, and L. Sun, "Rational design of nanoarray architectures for electrocatalytic water splitting," Advanced Functional Materials, vol. 29, no. 20, p. 1808367, 2019.
    [20] R. Melikov, "Protein Integrated Light-Emitting Diodes," Koc University, 2016.
    [21] I. Tighineanu, S. Langa, H. Föll, and V. Ursachi, Porous III-V Semiconductors. Ştiinţa, 2005.
    [22] R. Beranek, "(Photo) electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials," Advances in Physical Chemistry, vol. 2011, 2011.
    [23] R. Van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Springer, 2012.
    [24] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, "Photoelectrochemical devices for solar water splitting - materials and challenges," Chem Soc Rev, vol. 46, no. 15, pp. 4645-4660, Jul 31 2017, doi: 10.1039/c6cs00306k.
    [25] M. G. Walter et al., "Solar water splitting cells," Chemical reviews, vol. 110, no. 11, pp. 6446-6473, 2010.
    [26] A. J. Nozik and R. Memming, "Physical chemistry of semiconductor− liquid interfaces," The Journal of Physical Chemistry, vol. 100, no. 31, pp. 13061-13078, 1996.
    [27] B. Bhattacharyya, Electrochemical micromachining for nanofabrication, MEMS and nanotechnology. William Andrew, 2015.
    [28] S. Chen and L.-W. Wang, "Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution," Chemistry of Materials, vol. 24, no. 18, pp. 3659-3666, 2012.
    [29] C. Wei et al., "Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells," Advanced Materials, vol. 31, no. 31, p. 1806296, 2019.
    [30] J. Yang, D. Wang, H. Han, and C. Li, "Roles of cocatalysts in photocatalysis and photoelectrocatalysis," Accounts of chemical research, vol. 46, no. 8, pp. 1900-1909, 2013.
    [31] C. Jiang, S. J. Moniz, A. Wang, T. Zhang, and J. Tang, "Photoelectrochemical devices for solar water splitting–materials and challenges," Chemical Society Reviews, vol. 46, no. 15, pp. 4645-4660, 2017.
    [32] K. Maeda and K. Domen, "New non-oxide photocatalysts designed for overall water splitting under visible light," The Journal of Physical Chemistry C, vol. 111, no. 22, pp. 7851-7861, 2007.
    [33] T. Yao, X. An, H. Han, J. Q. Chen, and C. Li, "Photoelectrocatalytic materials for solar water splitting," Advanced Energy Materials, vol. 8, no. 21, p. 1800210, 2018.
    [34] J. Zhang et al., "Contact electrification induced interfacial reactions and direct electrochemical nanoimprint lithography in n-type gallium arsenate wafer," Chemical science, vol. 8, no. 3, pp. 2407-2412, 2017.
    [35] C. Jiang et al., "Stabilization of GaAs photoanodes by in situ deposition of nickel-borate surface catalysts as hole trapping sites," Sustainable energy & fuels, vol. 3, no. 3, pp. 814-822, 2019.
    [36] F. Yang, A. C. Nielander, R. L. Grimm, and N. S. Lewis, "Photoelectrochemical behavior of n-type GaAs (100) electrodes coated by a single layer of graphene," The Journal of Physical Chemistry C, vol. 120, no. 13, pp. 6989-6995, 2016.
    [37] C. Surdu-Bob, S. Saied, and J. Sullivan, "An X-ray photoelectron spectroscopy study of the oxides of GaAs," Applied Surface Science, vol. 183, no. 1-2, pp. 126-136, 2001.
    [38] Y. Chung and C.-W. Lee, "Electrochemistry of gallium," Journal of Electrochemical Science and Technology, vol. 4, no. 1, pp. 1-18, 2013.
    [39] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, "A practical beginner’s guide to cyclic voltammetry," Journal of chemical education, vol. 95, no. 2, pp. 197-206, 2018.
    [40] M. D. Sampson, A. D. Nguyen, K. A. Grice, C. E. Moore, A. L. Rheingold, and C. P. Kubiak, "Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: Eliminating dimerization and altering catalysis," Journal of the American Chemical Society, vol. 136, no. 14, pp. 5460-5471, 2014.
    [41] S. R. Morrison, "Electrochemistry at semiconductor and oxidized metal electrodes," 1980.
    [42] J. G. Speight, Lange's handbook of chemistry. McGraw-Hill Education, 2017.
    [43] E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, "Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+ p-silicon microwire array photocathodes," Energy & Environmental Science, vol. 5, no. 11, pp. 9653-9661, 2012.
    [44] S. M. Jesmani, H. Mohammadian-Semnani, H. Abdollah-Pour, and R. Amini, "The effect of pH on electrocatalytic properties of electrodeposited Ni–Mo/Ni coating using 1-ethyl-3-methylimidazolium bromide," Materials Research Express, vol. 6, no. 10, p. 1065e2, 2019.
    [45] S. Mokler, P. Watson, L. Ungier, and J. Arthur, "Adsorption and thermal desorption of chlorine from GaAs (100) surfaces," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 10, no. 6, pp. 2371-2377, 1992.
    [46] R. Fan et al., "Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni–Mo/Ni," Journal of Materials Chemistry A, vol. 7, no. 5, pp. 2200-2209, 2019.
    [47] M. Alsabet, M. Grdeń, and G. Jerkiewicz, "Electrochemical growth of surface oxides on nickel. Part 3: Formation of β-NiOOH in relation to the polarization potential, polarization time, and temperature," Electrocatalysis, vol. 6, no. 1, pp. 60-71, 2015.
    [48] Y. Jin, S. Huang, X. Yue, H. Du, and P. K. Shen, "Mo-and Fe-modified Ni (OH) 2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction," ACS Catalysis, vol. 8, no. 3, pp. 2359-2363, 2018.
    [49] L.-F. Huang, M. Hutchison, R. Santucci Jr, J. R. Scully, and J. M. Rondinelli, "Improved electrochemical phase diagrams from theory and experiment: the Ni–water system and its complex compounds," The Journal of Physical Chemistry C, vol. 121, no. 18, pp. 9782-9789, 2017.
    [50] A. J. Bard, A. B. Bocarsly, F. R. F. Fan, E. G. Walton, and M. S. Wrighton, "The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices," Journal of the American Chemical Society, vol. 102, no. 11, pp. 3671-3677, 1980.
    [51] T. Shinagawa, A. T. Garcia-Esparza, and K. Takanabe, "Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion," Scientific reports, vol. 5, no. 1, pp. 1-21, 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE