簡易檢索 / 詳目顯示

研究生: 彭裕峰
Peng, Yu-Feng
論文名稱: 簡諧振動子之動態能量分析
Energetic And Dynamic Analysis In Simple Harmonic Oscillator
指導教授: 邱輝煌
Chiu, Huei-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 72
中文關鍵詞: 簡諧震動子量子擴散流體力學量子能量模式平衡理論
外文關鍵詞: quantum modal balance theory, quantum diffusive fluid dynamics, simple harmonic oscillator
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   量子力學和奈米技術兩者都是在科學及應用上的一項熱門且尖端的領域,它們的發展對於二十一世紀的今天,都將在經濟、國防及社會上有著重大的影響,甚至改變人們的傳統思維及生活方式。今天我們在生活中所用到的科技工具,都是以前的研究所奠定下來的基礎而發展出來的,因此沒有今天的基礎研究,就沒有明天的應用科學,也就沒有相應的開發研究。本文的主要目的是利用邱教授所發展的“量子模式平衡理論”及“量子擴散流體力學”來分析及了解在量子簡諧振動系統當中,外加勢能、量子勢能等等的能量,彼此之間的關係和相互平衡的機制以及量子系統的架構穩定性與概率流體的流動性質如何聯繫。這些分析提供了在量子系統總能量的基本知識和化學過程裡細節的洞察力,而由於概率流體的量子擴散能和量子擴張動能兩者之間的儲存、釋放及相互作用產生了各種量子現象並且使量子系統得以維持基本架構。藉由這些基本且重要的分析、研究,使得在量子系統的主要原理、定理或關係上,能有重大的突破及創新。

      Nanosystems, atoms, and molecules possess quantized energy at each state and maintain structural stability, to preserve structural configuration. The questions of basic interest are how quantum energetic and the structural stability of a system are related with the flow properties of the probability fluid, which represents the probability density distribution of a particle in a quantum system. The knowledge offers fundamental understanding of the total energy of a system and provides detailed insights into chemical processes. The structural stability portrays the views of the structural integrity of nano-assemblying of artificial atoms, molecules and nano-machines through the nature of the balance of net forces on the particle in the system. The objectives of this paper are to show that the quantized energy of a harmonic oscillator is equal to the first type of quantum diffusion energy of the probability fluid, and the dynamic stability of an oscillator is maintained by the balance of a the forces induced by the second type of quantum diffusion energies with the particle interactive potential force, whereas the kinetic energy of the mean motion of the quantum probability fluid is supplied by the third type of quantum diffusion energy.

    ABSTRACT ------------------------------------- Ⅰ ACKNOWLEDGMENT ------------------------------ Ⅲ CONTENTS ------------------------------------- Ⅳ NOMENCLATURS -------------------------------- Ⅵ LIST OF FIGURES -------------------------------- Ⅷ CHAPTER I. INTRODUCTION 1.1 Introduction ----------------------------------- 1 1.2 Motivation ----------------------------------- 2 II. QUANTUM DIFFUSIVE FLUID DYNAMICS 2.1 Quantum Continuity Equation -------------------------- 4 2.2 Quantum Bernoulli’s Equation -------------------------- 7 2.3 Quantum Dilatation Energy And Diffusion Kinetic Energy ----------- 9 2.4 Quantum Flow In A Channel -------------------------- 11 III. ENERGETIC AND DYNAMICS OF A HARMONIC OSCILLATOR 3.1 Description Of Physical Problem ------------------------17 3.2 Principle Modes Of The Quantum Modal Balance Theory -----------21 3.3 Quantum Modal Balance Equations ---------------------- 23 3.4 Elemental Processes Of Dilatation And Diffusion Kinetic Energy Modes --- 25 3.5 Simple Harmonic Oscillator Modal Balance ------------------ 27 3.6 Numerical Simulation ----------------------------- 30 IV. RESULTS AND DISCUSSION 4.1 The Physical Origin Of Zero Point Energy And Quantized Energy ------- 33 4.2 Discussion Of Numerical Simulation ---------------------- 36 4.3 Comparison Of Classical And Quantum Probability For Simple Harmonic Oscillator -----------------------------------37 V. CONCLUSION 5.1 Conclusion ----------------------------------- 39 REFERENCES ------------------------------------ 41 FIGURES --------------------------------------- 43 VITA ------------------------------------------ 71

    [1] C. P. Poole & F.J. Owens, “ Introduction to Nanotechnology “, Wiley-Interscience, (2003)

    [2] Barthlott W. & Neinhuis C., “ The Purity of Scared Lotus or Escape From Contamination in Biological Surfaces “, Planta, 202, 1-8, (1997)

    [3] M. Gell-mann, “ Questions for The Future “, In The Nature Of Matter, Wolfson College Lecture 1980. Ed. By J.H. Mulvey, Claredon Press Oxford, (1981)

    [4] H.H. Chiu, “Quantum Fluid Mechanical Structure Of A Hydrogen-Like Atom” Submitted for Publication (2003)

    [5] H.H. Chiu, Quantum Fluid Dynamic And Quantum Computation Fluid Dynamics “Agenda Of The 21st Century Nanotechnology”, the 9th National Computational Fluid Dynamics Conference (2002)

    [6] H.H. Chiu, “Fluid Mechanics Of Quantum Systems”, Submitted for Publication 2002

    [7] D. Supriyo, “Quantum Phenomena”, Addison-Wesley, (1989)

    [8] D. Williams, “Molecular Physics “ Academic Press ,New York, p462-468,(1962)

    [9] R. Eisberg & R. Resnick, “Quantum Physics Of Atoms, Molecules, Solids, Nuclei, and particles” Wiley, (1985)

    [10] D.P. Schoemaker, C.W.Garland & J.W.Nibler, “Experiments In Physical Chemistry” 5thed , New York, McGraw-Hill (1989)

    [11] P.W. Atkins, “Physical Chemistry” 4thed, New York, W.H.Freeman and Company, (1990)

    [12] R.L. Burden & J.D.Fuires, “Numerical Analysis” 7thed, Bnoks/Cole, (2001)
    .

    [13] T.C. Wallstrom ,“In Equivalence Between The Schrödinger Equation And The
    Madelung Hydrodynamic Equation” ,Phys. Rev. A, 49, 1613, (1984)

    [14] D. Bohm, “Quantum Theory” New York, Prentice-Hall, (1951)

    [15] P.R. Holland, “The Quantum Theory Of Motion” Cambridge University Press,1993

    [16] K.K. Kan & J.J.Griffin,”Single-Particle Schrödinger Fluid. I. Formulation”,
    Phys. Rev. C, Vol 15, 3,p.1126-1151,(1997)

    [17] T. C. Wallstrom, ” On The Initial-Value Problem For The Madelung Hydrodynamic Equations”, Phys. Lett. A, Vol.184,3, p.229-233, (1994)

    [18] H.E. Wilhelm, ”Hydrodynamics Model Of Quantum Mechanics”, Phys. Rev. D,
    Vol. 1, 8, p.2278-2285, (1970)

    [19] Y.C. Wang, “Vibrational Modal Energy Balance Of A Diatomic Molecule”, Master Thesis, institution of aeronautics and astronautics National Cheng-Kung University, (2003)

    下載圖示 校內:立即公開
    校外:2004-06-23公開
    QR CODE