簡易檢索 / 詳目顯示

研究生: 郭珈瑋
Kuo, Chia-Wei
論文名稱: 探討原子序對穿透式背向散射電子繞射技術之空間解析度的影響
Effect of Atomic Number Z on Spatial Resolution of Transmission Electron Backscatter Diffraction
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 130
中文關鍵詞: 穿透式背向散射電子繞射空間解析度原子序數位影像相關係數
外文關鍵詞: t-EBSD, spatial resolution, atomic number, silver, aluminum, DIC
相關次數: 點閱:125下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將探討原子序對穿透式背向散射電子繞射之X軸、Y軸與Z軸空間解析度的影響。以銀與鋁雙晶(bicrystal)試片,結合數位影像相關係數法進行空間解析度的量測。最後將兩者之空間解析度的結果與本實驗室的先前研究成果進行比較,包含與銅的穿透式EBSD空間解析度的比較以及銀、銅與鋁的穿透式與傳統式EBSD之空間解析度的比較。
    由實驗所得對於銀在工作距離12 mm、試片傾斜50°、加速電壓30 kV以及試片厚度100 nm時,可得到最佳的X軸、Y軸與Z軸空間解析度,分別為18.9 nm、33.7 nm與22.7 nm;對於鋁則是在工作距離12 mm、試片傾斜60°、加速電壓15 kV以及試片厚度100 nm時,可得到最佳的X軸、Y軸與Z軸空間解析度,分別為22.8nm、36.6 nm與34.7 nm。
    與純銅的穿透式EBSD空間解析度比較結果顯示,對於三種材料空間解析度皆隨著試片厚度減少而提升。對於較輕原子量的元素(如:鋁),空間解析度隨著電壓由30kV下降至15kV而提升;較重原子(如:銅與銀),空間解析度則是隨著電壓由15kV增加至30kV而提升。穿透式與傳統式EBSD空間解析度比較結果顯示,對於銅與銀在較高加速電壓20 kV ~ 30 kV下,穿透式EBSD空間解析度會優於傳統式EBSD;對於鋁則是在加速電壓10 kV ~ 30 kV範圍內,穿透式EBSD空間解析度皆會優於傳統式EBSD。

    Bicrystals of silver and aluminum, combined with the digital image correlation (DIC) technique were investigated the effect of atomic number on spatial resolution of transmission Electron Backscatter Diffraction, also known as t-EBSD. The experimental factors included atomic number, working distance, tilt angle, accelerating voltage, and specimen thickness. For silver, the optimized spatial resolution of X (lateral), Y (longitudinal), and Z (depth) axes was 18.9, 33.7, and 22.7 nm respectively, with the accelerating voltage of 30 kV and the specimen thickness of 100 nm. For aluminum the optimized spatial resolution of X (lateral), Y (longitudinal), and Z (depth) axes was 22.8, 36.6, and 34.7 nm respectively under the voltage of 15 kV and the same thickness of 100 nm. The results showed that elements as light as aluminum would obtain higher spatial resolution along with the accelerating voltage decreasing from 30 kV down to 15 kV; on the contrary, heavier elements such as copper and silver, their resolution went lower with the voltage increasing from 15 kV up to 30 kV. The X spatial resolution of t-EBSD was higher than that of standard-EBSD for copper and silver above the accelerating voltage of 20 kV and 25 kV, respectively. The Y spatial resolution of t-EBSD was higher than that of standard-EBSD above the accelerating voltage between 20 kV and 25 kV for copper and silver. However, for aluminum, the X and Y spatial resolutions of t-EBSD was higher than that of standard-EBSD in range of 10 kV to 30 kV.

    中文摘要 I Extended Abstract II 致謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIV 第一章 前言 1 第二章 文獻回顧 4 2.1 背向散射電子繞射技術的發展 4 2.2 穿透式背向散射電子繞射技術的發展 6 2.3 菊池線的形成 11 2.4 空間解析度 15 2.4.1 空間解析度的定義 15 2.4.2 影響空間解析度的因素 17 2.5 菊池圖影像分析方法 29 2.5.1 灰階值強度直方圖 29 2.5.2 灰階值共生矩陣 31 2.5.3傅立葉轉換 33 第三章 實驗材料與方法 35 3.1 實驗流程 35 3.2 穿透式背向散射電子繞射試片製備 38 3.2.1 銀雙晶試片 38 3.2.2 鋁雙晶試片 46 3.3 穿透式背向散射電子繞射試片位置參數優化 48 3.3.1 試片位置幾何圖與試片夾具 48 3.3.2 試片位置參數優化分析 53 3.4 穿透式背向散射電子繞射空間解析度分析 54 3.4.1 X軸解析度 54 3.4.2 Y軸解析度 61 3.4.3 Z軸解析度 63 第四章 實驗結果 66 4.1 銀 66 4.1.1穿透式背向散射電子繞射試片位置參數優化 66 4.1.2 穿透式背向散射電子繞射空間解析度分析 71 4.1.2.1 X軸解析度 71 4.1.2.2 Y軸解析度 76 4.1.2.3 Z軸解析度 81 4.2鋁 84 4.2.1穿透式背向散射電子繞射試片位置參數優化 84 4.2.2穿透式背向散射電子繞射空間解析度分析 89 4.2.2.1 X軸解析度 89 4.2.2.2 Y軸解析度 94 4.2.2.3 Z軸解析度 99 第五章 討論 102 5.1 穿透式背向散射電子繞射試片位置參數優化 102 5.2 原子序對穿透式背向散射電子繞射之X軸與Y軸空間解析度影響 105 5.3 原子序對穿透式背向散射電子繞射之Z軸空間解析度影響 115 5.4 原子序對穿透式與傳統式背向散射電子繞射之Z軸空間解析度的比較 116 5.5 原子序對穿透式與傳統式背向散射電子繞射之X軸與Y軸空間解析度的比較 119 第六章 結論 124 參考文獻 126

    1.D. Dingley, "Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy", Journal of Microscopy, 213(2014) 214-224.
    2.F.J. Humphreys, "Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD)", Scripta Materialia, 51(2004) 771-776.
    3.D. Chen, J.-C. Kuo, and W.-T. Wu, "Effect of microscopic parameters on EBSD spatial resolution", Ultramicroscopy, 111(2011), 1488-1494.
    4.R.R. Keller and R.H. Geiss, "Transmission EBSD from 10 nm domains in a scanning electron microscope", Journal of Microscopy, 245(2012) 245-251.
    5.S. Suzuki, "Features of Transmission EBSD and its Application", Jom, 65(2013) 1254-1263.
    6.Ludwig Reimer, "Scanning Electron Microscopy physics of image formation and microanalysis", Springer-Verlag, Berlin Heidelberg New York Tokyo, 1998.
    7.M.N. Alam, M. Blackman, and D.W. Pashley, "High-Angle Kikuchi Patterns", P R Soc A, 221(1954) 224-242.
    8.陳志慶,「背向散射電子繞射技術的空間及角度解析度之探討」,,2012,國立成功大學材料科學及工程學系博士論文。
    9.M.A. Meyers, A. Mishra, and D.J. Benson, "Mechanical properties of nanocrystalline materials", Progress in Materials Science, 51(2006) 427-556.
    10.Y. H. Zhao, X.-Z. Liao, S. Cheng, E. Ma and Y.T. Zhu, "Simultaneously increasing the ductility and strength of nanostructured alloys", Advanced Materials, 18(2006) 2280-2283.
    11.R.R. Keller, and R.H. Geiss, "Transmission EBSD from 10 nm domains in a scanning electron microscope", Journal of Microscopy, 245(2012) 245-251.
    12.S. Suzuki, "Evaluation of Transmission-EBSD Method and Its Application to Observation of Microstructures of Metals", Journal of the Japan Institute of Metals and Materials, 77(2013) 268-275.
    13.A. Garner, A. Gholinia, P. Frankel, M. Gass, I. Maclaren and M. Preuss, "The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy", Acta Materialia, 80(2014) 159-171.
    14.M. Meisnar, A. Vilalta-Clemente, A. Gholinia, M. Moody, A.J. Wilinson, N. Huin, S. Lozano-Perez, "Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels", Micron, 75(2015) 1-10.
    15.Patrick W. Trimby, "Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope", Ultramicroscopy, 120(2012) 16-24.
    16.N. Brodusch, H. Demers and R. Gauvin, "Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope", Journal of Microscopy, 250(2013) 1-14.
    17.W. Zieliński, T. Płociński, and K.J. Kurzydłowski, "Transmission Kikuchi diffraction and transmission electron forescatter imaging of electropolished and FIB manufactured TEM specimens", Materials Characterization, 104(2015) 42-48.
    18.S. Zaefferer, "On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns", Ultramicroscopy, 107(2007). 254-266.
    19.Nicolas Brodusch, Hendrix Demers, Michel Trudeau and Raynald Gauvin, "Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization", Scanning, 35(2013) 375-386.
    20.J.J. Fundenberger, E. Bouzy, D. Goran, J. Guyon, H. Yuan and A. Morawiec, "Orientation mapping by transmission-SEM with an on-axis detector", Ultramicroscopy, 161(2016) 17-22.
    21.施智文,「探討加速電壓和試片厚度對穿透式背向散射電子繞射技術之空間解析度的影響」,2016,國立成功大學材料科學及工程學系碩士論文.
    22.L. Reimer, and H. Kohl, "Transmission Electron Microscopy Physics of Image Formation", Springer, USA, 2007.
    23.D.B. Williams, and C.B. Carter, "Transmission Electron Microscopy A Textbook for Materials Science", Plenum Press, New York and London, 2009.
    24.A. Winkelmann, C. Trager-Cowan, F. Sweeney, A.P. Day and P. Parbrook, "Many-beam dynamical simulation of electron backscatter diffraction patterns". Ultramicroscopy, 107(2007) 414-421.
    25.A. Winkelmann, "Dynamical effects of anisotropic inelastic scattering in electron backscatter diffraction. Ultramicroscopy", 108(2008) 1546-1550.
    26.S. Zaefferer, "A critical review of orientation microscopy in SEM and TEM. Crystal Research and Technology", 46(2011) 607-628.
    27.F.J. Humphreys, and I. Brough, "High resolution electron backscatter diffraction with a field emission gun scanning electron microscopy", Journal of Microscopy, 195(1999) 6-9.
    28.K.P. Rice, R.R. Keller, and M.P. Stoykovich, "Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope", Journal of Microscopy, 254(2014) 129-36.
    29.R. van Bremen, D. Ribas Gomes, L.T.H. de Jeer, V. Ocelik and J. De Hosson, "On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD)", Ultramicroscopy, 160(2016) 256-264.
    30.Y. Z. Wang, M.G. Kong, Z.W. Liu, C.C. Lin and Y. Zeng, "Effect of microscope parameter and specimen thickness of spatial resolution of transmission electron backscatter diffraction", Journal of Microscopy, 264(2016) 34-40.
    31.Jhih-Wun Shih, Chia-Wei Kuo, Jui-Chao Kuo and Tsung-Yuan Kuo, "Effects of accelerating voltage and specimen thickness on the spatial resolution of transmission electron backscatter diffraction in Cu", Ultramicroscopy, 177(2017) 43-52.
    32.Patrick W. Trimby, Y. Cao, Z. Chen, S. Han, K.J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J.T. Wang, J. Wheeler and J.M. Cairney, "Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope", Acta Materialia, 62(2014) 69-80.
    33.R.H. Geiss, K.P. Rice, and R.R. Keller, "Transmission EBSD in the Scanning Electron Microscope", Microscopy Today, 21(2013) 16-20.
    34.Patrick W. Trimby, "Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope", Ultramicroscopy, 120(2012) 16-24.
    35.K.P. Rice, and R.R. Keller, "Thickness-dependent beam broadening in transmission EBSD", Microscopy and Microanalysis, 20(2014) 854-855.
    36.A. Winkelmann, "Principles of depth-resolved Kikuchi pattern simulation for electron backscatter diffraction", Journal of Microscopy, 239(2010) 32-45.
    37.A. Deal, T. Hooghan, and A. Eades, "Energy-filtered electron backscatter diffraction", Ultramicroscopy, 108(2008) 116-125.
    38.L. Reimer, "Transmission Electron Microscopy: Physics of Image Formation and Microanalysis", Springer, USA, 1997.
    39.T. Maitland, and S. Sitzman, "Scanning Microscopy for Nanotechnology - Techniques and Applications. Electron backscatter diffraction (EBSD) technique and materials characterization", Springer, New York, 2006.
    40.S.I. Wright, and M.M. Nowell, "EBSD image quality mapping", Microscopy and Microanalysis, 12(2006) 72-84.
    41.A.A. Michelson, "Studies in Optics", Dover Publications, New Yorker, 1995.
    42.B. Pathak, and D. Barooah, "Texture analysis based on the gray-level co-occurrence matrix considering possible orientations", International Journal of Advanced Research Electrical, Electronics and Instrumentation Engineering, 2(2013) 4206-4212.
    43.A. Eleyan, and H. Demirel, "Co-occurrence matrix and its statistical features as a new approach for face recognition", Turkish Journal of Electrical Engineering and Computer Sciences, 19(2011) 97-107.
    44.A. Baraldi, and F. Parmiggiani, "An investigation of the textural characteristics associated with gray level co-occurrence matrix statistical parameters", IEEE Trans. on Geosci. Remote Sens, 33(1995) 293-303.
    45.Olaf Engler and Valerie Randle, "Introduction to Texture Analysis Macrotexture, Microtexture, and Orientation Mapping", CRC Press, Boca Raton London New York, 2010.
    46.T.C. Isabell, and V.P. Dravid, "Resolution and sensitivity of electron backscattered diffraction in a cold field emission gun SEM", Ultramicroscopy, 67(1997) 59-68.
    47.S.X. Ren, E.A. Kenik, K.B. Alexander and A. Goyal, "Exploring spatial resolution in electron back-scattered diffraction experiments via Monte Carlo simulation", Microscopy and Microanalysis, 4(1998) 15-22.

    下載圖示 校內:2019-07-31公開
    校外:2019-07-31公開
    QR CODE