| 研究生: |
陳麒鴻 Chen, Chi-Hung |
|---|---|
| 論文名稱: |
以體外模型使用咬合紙與力量敏感型咬合指示系統進行咬合干擾之特性分析及比較 In Vitro Characterization and Comparison of Occlusal Interferences Using Articulating Paper and Two Force-Sensitive Occlusal Indicators |
| 指導教授: |
陳永崇
Chen, Yung-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 咬合干擾 、咬合調整 、咬合分析 、咬合干擾探測力 、體外咬合模型 、牙周韌帶模擬 、數位/電腦化咬合分析 |
| 外文關鍵詞: | Occlusal Interference, Occlusal Adjustment , Occlusal Analysis, Occlusal Interference Detection Capability , In Vitro Occlusal Model, Periodontal Ligament Simulation, Digital (Computerized) Occlusal Analysis |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在牙科治療中,咬合調整為一項重要且普遍的臨床步驟。於牙齒修復填補或贋復物置入後,患者的咬合需經過精確調整。若未能適當移除咬合干擾 (Occlusal Interference),可能會造成咬合創傷 (Occlusal Trauma)、機械性併發症 (mechanical complications)或甚至引發顳顎關節症候群 (Temporomandibular Disorders, TMD)。事實上,咬合調整應基於準確的咬合分析結果而施行。然而,臨床上常用之不同咬合分析工具,其對於干擾點大小、形態與受力特性的反應機制並不相同,可能導致對同一干擾點之判讀產生差異。因此,本研究的目的在於評估不同咬合分析工具,包含傳統咬合紙、Dental Prescale II (GC Corp.)與T-Scan (T-Scan Novus, Tekscan, Inc.),在咬合接觸分析中的效能,並嘗試識別其相關模式,進而為臨床咬合調整提供深入見解。本研究特別聚焦於不同工具在不同大小尺度干擾下之反應差異,其中小尺度干擾定義為高度不超100 μm且直徑不超過1 mm的干擾點,而大尺度干擾則指高度達150 μm或直徑達1.5 mm之干擾點,以利後續數據解讀與比較。研究方法包括運用數位牙科設計軟體 (DentalCAD 3.1, Exocad GmbH)來設計咬合干擾模型,並透過3D列印機將模型實體化。這些模型於萬能試驗機上以固定之垂直向載重模式500N的力量進行咬合模擬測試,本研究僅探討垂直咬合模式,模擬最大咬頭嵌合 (Maximum Intercuspation)下緊咬 (Clenching)之咬合狀態,不包含任何側向運動,聚焦分析工具於垂直受力條件下之表現。實驗將採用三種咬合分析工具:12微米厚的咬合紙 (AP)、Prescale II (PS),以及T-Scan (TS)。在上顎右側第一大臼齒增加直徑0.5 mm、1 mm、1.5 mm,高度50 μm、100 μm、150 μm共九種組合之圓頂型 (Dome-shaped)干擾點,藉此模擬不同尺度之咬合干擾。最後進一步分析工具標記對於干擾點的覆蓋率,以判斷各種分析工具針對干擾點的探測能力。各組條件皆進行三次重複量測,並採用Spearman相關係數、偏Spearman相關係數、標準化迴歸係數(β)、MAE、RMSE以及Wilcoxon符號等級檢定進行統計分析。不論在有/無PDL情境下,AP與PS皆對小尺度干擾呈現明顯高估;雖然PS顯示出顯著較佳的再現性,但兩者與理論干擾面積皆未呈現穩定的單調相關。於模擬PDL條件中,AP與真實干擾面積呈中度且具統計顯著性之相關,並對干擾直徑所反映的接觸面積橫向擴張具高度敏感性;相對地,PS則對干擾高度所造成的垂直壓縮更為敏感,此現象亦與其壓力探測機制相符。相較之下,TS所量測者為整體牙弓之相對力分布,在靜態負載條件下,無法準確定位單一局部接觸點,顯示其較適合用於動態或整體咬合力分配之評估。基於上述結果,本研究提出一套具臨床可行性的咬合調整流程:當干擾位置未知時,宜先以PS判定高壓力集中區;其後使用AP進行精確的干擾點定位與微調;最終再以PS確認壓力是否已降至探測閾值以下,以確保咬合調整充分且避免過度去除齒質。
Occlusal adjustments of dental restorations are crucial for ensuring their optimal long-term outcomes. Mismanagement of occlusal interferences can lead to occlusal trauma, mechanical complications, and potential temporomandibular joint disorders. This study evaluates the effectiveness of various occlusal indicators, including traditional articulating paper and quantifiable occlusal indicators such as the Dental Prescale II (GC Corp.) and the T-Scan (T-Scan Novus, Tekscan, Inc.), in analyzing occlusal contacts. Additionally, this study aims to identify associated patterns and is expected to offer insights into clinical occlusal adjustment protocols. Occlusal interference models were digitally designed using DentalCAD 3.1 (exocad GmbH) and fabricated with a 3D printer. These models were tested on a vertical stand to simulate jaw articulation under a 500 N force. Three types of occlusal indicators were employed: 12 μm-thick articulating paper (AP), Dental Prescale II (PS), and T-Scan (TS). Dome-shaped interferences with diameters of 0.5 mm, 1 mm, and 1.5 mm and heights of 50 μm, 100 μm, and 150 μm were added to the upper right first molar (Tooth 16), representing small-scale (≤100 μm height and ≤1 mm diameter) and large-scale interferences (≥150 μm height or ≥1.5 mm diameter). The coverage of indicator markings over the interference sites was further analyzed to evaluate the detection capability of each occlusal analysis tool. Each condition was measured three times, and statistical analyses included Spearman and partial Spearman correlations, standardized regression coefficients (β), MAE, RMSE, and Wilcoxon signed-rank tests. Regardless of the presence or absence of PDL simulation, both AP and PS markedly overestimated small-scale interferences. PS demonstrated significantly superior repeatability, though neither system showed strong monotonic correlation with theoretical areas. With simulated PDL, AP showed a significant moderate correlation with true area and primarily responded to diameter-related lateral expansion. By contrast, PS primarily responded to height-dependent vertical compression, consistent with its pressure-based detection mechanism. TS, which measures relative force distribution across the dental arch, was unable to localize point-specific contacts under static loading, indicating limited utility for static interference detection. Based on these findings, a clinically applicable workflow is proposed: PS should be used first to identify high-pressure regions when the interference site is unknown, followed by thin AP for precise localization and adjustment, and finalized by PS confirmation of adequate pressure reduction.
1. Baba K, Tsukiyama Y, Clark GT. Reliability, validity, and utility of various occlusal measurement methods and techniques. J Prosthet Dent. 2000;83(1):83-89. doi:10.1016/S0022-3913(00)70092-8
2. The Glossary of Prosthodontic Terms 2023: Tenth Edition. J Prosthet Dent. 2023;130(4):e1-e3. doi:10.1016/j.prosdent.2023.03.003
3. Hickel R, Mesinger S, Opdam N, et al. Revised FDI criteria for evaluating direct and indirect dental restorations—recommendations for its clinical use, interpretation, and reporting. Clin Oral Investig. 2023;27(6):2573-2592. doi:10.1007/s00784-022-04814-1
4. Türp JC, Greene CS, Strub JR. Dental occlusion: a critical reflection on past, present and future concepts. J Oral Rehabil. 2008;35(6):446-453. doi:10.1111/j.1365-2842.2007.01820.x
5. Dawson PE. Functional Occlusion: From TMJ to Smile Design. Elsevier Health Sciences; 2006.
6. Berglundh T, Giannobile WV, Lang NP, Sanz M, eds. Lindhe’s Clinical Periodontology and Implant Dentistry. 7th ed. Wiley Blackwell; 2021.
7. Sailer I, Karasan D, Todorovic A, Ligoutsikou M, Pjetursson BE. Prosthetic failures in dental implant therapy. Periodontol 2000. 2022;88(1):130-144. doi:10.1111/prd.12416
8. Enkling N, Nicolay C, Bayer S, Mericske-Stern R, Utz KH. Investigating interocclusal perception in tactile teeth sensibility using symmetric and asymmetric analysis. Clin Oral Investig. 2010;14(6):683-690. doi:10.1007/s00784-009-0348-3
9. Enkling N, Nicolay C, Utz KH, Jöhren P, Wahl G, Mericske-Stern R. Tactile sensibility of single-tooth implants and natural teeth. Clin Oral Implants Res. 2007;18(2):231-236. doi:10.1111/j.1600-0501.2006.01321.x
10. Jacobs R, Van Steenberghe D. Comparative evaluation of the oral tactile function bv means of teeth or implant-supported prostheses. Clin Oral Implants Res. 1991;2(2):75-80. doi:10.1034/j.1600-0501.1991.020205.x
11. Lee SJ, Alamri O, Cao H, Wang Y, Gallucci GO, Lee JD. Occlusion as a predisposing factor for peri-implant disease: A review article. Clin Implant Dent Relat Res. 2023;25(4):734-742. doi:10.1111/cid.13152
12. Fu JH, Hsu YT, Wang HL. Identifying occlusal overload and how to deal with it to avoid marginal bone loss around implants. Eur J Oral Implantol. 2012;5 Suppl:S91-103.
13. Goodacre CJ, Kan JYK, Rungcharassaeng K. Clinical complications of osseointegrated implants. J Prosthet Dent. 1999;81(5):537-552. doi:10.1016/S0022-3913(99)70208-8
14. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JYK. Clinical complications with implants and implant prostheses. J Prosthet Dent. 2003;90(2):121-132. doi:10.1016/S0022-3913(03)00212-9
15. Goldstein G, Goodacre C, Taylor T. Occlusal Schemes for Implant Restorations: Best Evidence Consensus Statement. J Prosthodont. 2021;30(S1):84-90. doi:10.1111/jopr.13319
16. Naert I, Duyck J, Vandamme K. Occlusal overload and bone/implant loss. Clin Oral Implants Res. 2012;23(s6):95-107. doi:10.1111/j.1600-0501.2012.02550.x
17. Resnik RR, Misch CE. Misch’s Contemporary Implant Dentistry. 4th ed. Elsevier; 2021.
18. Aldowish AF, Alsubaie MN, Alabdulrazzaq SS, et al. Occlusion and Its Role in the Long-Term Success of Dental Restorations: A Literature Review. Cureus. 2024;16(11):e73195. doi:10.7759/cureus.73195
19. Cao R, Xu H, Lin J, Liu W. Evaluation of the accuracy of T-scan system and Cerec Omnicam system used in occlusal contact assessment. Heliyon. 2023;9(2):e13476. doi:10.1016/j.heliyon.2023.e13476
20. Halperin GC, Halperin AR, Norling BK. Thickness, strength, and plastic deformation of occlusal registration strips. J Prosthet Dent. 1982;48(5):575-578. doi:10.1016/0022-3913(82)90367-5
21. Schelb E, Kaiser DA, Brukl CE. Thickness and marking characteristics of occlusal registration strips. J Prosthet Dent. 1985;54(1):122-126. doi:10.1016/S0022-3913(85)80086-X
22. Brizuela-Velasco A, Alvarez-Arenal A, Ellakuria-Echevarria J, del Rio-Highsmith J, Santamaria-Arrieta G, Martin-Blanco N. Influence of Articulating Paper Thickness on Occlusal Contacts Registration: A Preliminary Report. Int J Prosthodont. 2015;28(4):360-362. doi:10.11607/ijp.4112
23. Saraçoǧlu A, Özpinar B. In vivo and in vitro evaluation of occlusal indicator sensitivity. J Prosthet Dent. 2002;88(5):522-526. doi:10.1067/mpr.2002.129064
24. Saad MN, Weiner G, Ehrenberg D, Weiner S. Effects of load and indicator type upon occlusal contact markings. J Biomed Mater Res B Appl Biomater. 2008;85B(1):18-22. doi:10.1002/jbm.b.30910
25. Warreth A. Fundamentals of occlusion and restorative dentistry. Part II: occlusal contacts, interferences and occlusal considerations in implant patients. Ir Dent Assoc. 2015;61(5):252-259.
26. Zhao Z, Wang Q, Zheng X, et al. Reliability and validity of two computerised occlusion analysis systems. J Dent. 2022;118:104051. doi:10.1016/j.jdent.2022.104051
27. Basson E, Kerstein R, Radke J. Ability to correctly select high force occlusal contacts from articulating paper markings. Adv Dent Technol Tech. 2020;2(1):101-111.
28. Sutter BA. A digital poll of dentists testing the accuracy of paper mark subjective interpretation. CRANIO®. 2018;36(6):396-403. doi:10.1080/08869634.2017.1362786
29. Kerstein RB, Radke J. Clinician accuracy when subjectively interpreting articulating paper markings. CRANIO®. 2014;32(1):13-23. doi:10.1179/0886963413Z.0000000001
30. Qadeer S, Kerstein R, Kim RJY, Huh JB, Shin SW. Relationship between articulation paper mark size and percentage of force measured with computerized occlusal analysis. J Adv Prosthodont. 2012;4(1):7-12. doi:10.4047/jap.2012.4.1.7
31. Bozhkova T, Musurlieva N, Slavchev D. Comparative Study Qualitative and Quantitative Techniques in the Study of Occlusion. BioMed Res Int. 2021;2021:e1163874. doi:10.1155/2021/1163874
32. Qadeer S. Accuracy, Reliability and Clinical Implications of Static Compared to Quantifiable Occlusal Indicators. Eur J Prosthodont Restor Dent. 2021;29(3):130-141. doi:10.1922/EJPRD_2202Qadeer12
33. Carey JP, Craig M, Kerstein RB, Radke J. Determining a Relationship Between Applied Occlusal Load and Articulating Paper Mark Area. Open Dent J. 2007;1:1-7. doi:10.2174/1874210600701010001
34. Millstein P, Maya A. An evaluation of occlusal contact marking indicators: A descriptive quantitative method. J Am Dent Assoc. 2001;132(9):1280-1286. doi:10.14219/jada.archive.2001.0373
35. Huang YF, Wang CM, Shieh WY, Liao YF, Hong HH, Chang CT. The correlation between two occlusal analyzers for the measurement of bite force. BMC Oral Health. 2022;22(1):472. doi:10.1186/s12903-022-02484-9
36. Zhao Z, Wang Q, Li J, et al. Construction of a novel digital method for quantitative analysis of occlusal contact and force. BMC Oral Health. 2023;23(1):190. doi:10.1186/s12903-023-02899-y
37. Wang Q, Zhao Z, Zhou M, et al. In vivo evaluation of the reliability and validity of three digital occlusion analysis methods. J Dent. 2022;127:104355. doi:10.1016/j.jdent.2022.104355
38. Kerstein, Dmd RB, ed. Handbook of Research on Clinical Applications of Computerized Occlusal Analysis in Dental Medicine. IGI Global; 2020. doi:10.4018/978-1-5225-9254-9
39. Maness WL, Benjamin M, Podoloff R, Bobick A, Golden RF. Computerized occlusal analysis: a new technology. Quintessence Int Berl Ger 1985. 1987;18(4):287-292.
40. Ayuso-Montero R, Mariano-Hernandez Y, Khoury-Ribas L, Rovira-Lastra B, Willaert E, Martinez-Gomis J. Reliability and Validity of T-scan and 3D Intraoral Scanning for Measuring the Occlusal Contact Area. J Prosthodont. 2020;29(1):19-25. doi:10.1111/jopr.13096
41. Uchale P, Deogade S, Khalikar A, Wankhade S, Taneja S, Lalsare S. Effectiveness of T-Scan Technology in Identifying Occlusal Interferences and its Role in the Management of Temporomandibular Disorders: A Systematic Review. J Clin Diagn Res. 2024;18(6):9-15. doi:10.7860/JCDR/2024/67960.19470
42. Lee W, Kwon HB, Kim MJ, Lim YJ. Determination of the reliability and repeatability of a quantitative occlusal analyzer by using a piezoelectric film sensor: An in vitro study. J Prosthet Dent. 2022;127(2):331-337. doi:10.1016/j.prosdent.2020.07.024
43. Bostancıoğlu SE, Toğay A, Tamam E. Comparison of two different digital occlusal analysis methods. Clin Oral Investig. 2022;26(2):2095-2109. doi:10.1007/s00784-021-04191-1
44. Rovira-Lastra B, Khoury-Ribas L, Flores-Orozco EI, Ayuso-Montero R, Chaurasia A, Martinez-Gomis J. Accuracy of digital and conventional systems in locating occlusal contacts: A clinical study. J Prosthet Dent. 2024;132(1):115-122. doi:10.1016/j.prosdent.2023.06.036
45. Schmid A, Strasser T, Rosentritt M. Finite Element Analysis of Occlusal Interferences in Dental Prosthetics Caused by Occlusal Adjustment. Int J Prosthodont. 2023;36(4):436-442. doi:10.11607/ijp.7178
46. Oberoi D, Hegde C. Evaluation and comparison of occlusal interference markings with articulating papers of varying thicknesses: An in vivo study. J Prosthodont. 2025;34(6):651-656. doi:10.1111/jopr.14086
47. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1):26-35. doi:10.1111/j.1600-0501.2004.01067.x
48. Weinstein C, Hirschhaut M, Flores-Mir C. Occlusal adjustment in the digital era – A working protocol. Semin Orthod. 2025;31(1):18-46. doi:10.1053/j.sodo.2024.11.003
49. Manziuc MM, Savu MM, Almăşan O, et al. Insights into Occlusal Analysis: Articulating Paper versus Digital Devices. J Clin Med. 2024;13(15):15. doi:10.3390/jcm13154506
50. Fan J, Caton JG. Occlusal trauma and excessive occlusal forces: Narrative review, case definitions, and diagnostic considerations. J Periodontol. 2018;89(S1):S214-S222. doi:10.1002/JPER.16-0581
51. Asazuma Y, Isogai Y, Watanabe K, Hara K. Changes in gnathosonic and tooth contact characteristics induced by experimental occlusal interferences created using a full-cast double crown. J Oral Rehabil. 1995;22(3):203-211. doi:10.1111/j.1365-2842.1995.tb01565.x
52. Clark GT, Tsukiyama Y, Baba K, Watanabe T. Sixty-eight years of experimental occlusal interference studies: What have we learned? J Prosthet Dent. 1999;82(6):704-713. doi:10.1016/S0022-3913(99)70012-0
53. Michelotti A, Farella M, Gallo LM, Veltri A, Palla S, Martina R. Effect of Occlusal Interference on Habitual Activity of Human Masseter. J Dent Res. 2005;84(7):644-648. doi:10.1177/154405910508400712
54. Cao Y. Occlusal disharmony and chronic oro-facial pain: from clinical observation to animal study. J Oral Rehabil. 2022;49(2):116-124. doi:10.1111/joor.13236
55. Randow K, Carlsson K, Edlund J, Oberg T. The effect of an occlusal interference on the masticatory system. An experimental investigation. Odontol Revy. 1976;27(4):245-256.
56. Yu CY. Analyze the Occlusal Contact with Three Different Techniques: An In Vitro Study. Master’s Thesis. National Taiwan University; 2019. doi:10.6342/NTU201903348
57. Jauregi M, Amezua X, Manso AP, Solaberrieta E. Positional influence of center of masticatory forces on occlusal contact forces using a digital occlusal analyzer. J Prosthet Dent. 2023;129(6):930.e1-930.e8. doi:10.1016/j.prosdent.2023.03.007
58. deMoya AV, Schmidt ER, Eckert GJ, Katona TR. The effects of a periodontal ligament analogue on occlusal contact forces. J Oral Rehabil. 2022;49(3):316-326. doi:10.1111/joor.13278
59. Jansen van Vuuren L, Jansen van Vuuren WA, Broadbent JM, Duncan WJ, Waddell JN. Measurement of tooth displacement. J Mech Behav Biomed Mater. 2023;146:106059. doi:10.1016/j.jmbbm.2023.106059
60. Wang TM, Chang YH, Yang TC, Lin LD. Effect of scan delay on measurements of an occlusal pressure sensitive film: An in-vitro study. J Dent Sci. 2022;17(1):30-34. doi:10.1016/j.jds.2021.08.005