| 研究生: |
陳鍵毅 Chen, Chien-I |
|---|---|
| 論文名稱: |
以分子動力學模擬奈米碳錐對銅基板進行奈米壓印之研究 Study of a carbon nano-cone indent on copper substrate by molecular dynamics simulation |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 分子動力學 、奈米碳錐 、奈米壓印 |
| 外文關鍵詞: | Carbon nanocone, Nanoindentation, Molecular dynamics |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用分子動力學方法,模擬奈米碳錐作為一探針頭對銅基板進行奈米壓印研究。研究中指出奈米碳錐在壓印的過程中,碳錐末端會受到銅基板的徑向擠壓,使奈米碳錐變成扁平尖狀之結構。其奈米碳錐壓印在銅基板上之橫截面面積縮小,說明此加工所做之功變小,因為正向的抵抗力變小,且長度越長之奈米碳錐所需做之功越小。
在研究中指出奈米碳錐依照不同長度與溫度環境下,其加工性能可分為兩類,一類為加工過程中奈米碳錐在銅基板內部發生挫曲,另一類為奈米碳錐在銅基板外部發生挫曲。其第一類為可對銅基板完美加工至設定之理想深度,且進一步的分析發現此分類中越長的奈米碳錐,於壓印過程中所需要作功越少。將溫度提高會減少奈米碳錐變尖之效應,反而使壓硬過程產生更大的排斥力量,而造成需要較的的能量進行壓印。在壓印加工完成後發現,奈米碳錐對銅基板內原子結構所造成的破壞,僅發生在表面層的原子上且在低溫環境下則特別明顯。
This study dealt with deep nanoindentation of a copper substrate with single-walled carbon nanocones (SWCNCs) as the proximal probe tip, using molecular dynamics (MD) simulations. As an important feature, during the indentation the end part of the SWCNC tip will suffer a narrowing effect due to the radial component of resistant compression from the substrate and then forms into a somewhat flat arrowhead-like shape. The effective cross-sectional area of the SWCNC tip inside the substrate that the resistant force is acting on therefore is reduced to lower the normal resistant force on the tip. The narrowing effect is more significant for longer SWCNC tips. Two categories of SWCNCs are therefore classified according to whether the SWCNC tip buckles at its part inside or outside the substrate. SWCNCs of the first category defined in this paper are found able to indent into the substrate up to a desired depth. Further analyses demonstrate that a longer SWCNC tip of the first category will encounter smaller repulsive force during the indentation and thus require less net work to accomplish the indentation process. Raising temperatures will weaken the narrowing effect, so an SWCNC tip of the first category also encounters greater repulsive force and larger net work in the indentation process performed at a higher temperature. Notably, a permanent hollow hole with high aspect ratio will be produced on the copper substrate, while copper atoms in close proximity to the hole are only slightly disordered, especially when the indentation is manipulated at a lower temperature by using a longer SWCNC tip.
[1] W. Ehrfeld and H. Lehr, Deep X-Ray Lithography for the production of three-dimensional microstructures from metals, polymers and ceramics, Radiat. Phys. Chem., 45, 3, 349-365., 1995
[2] R. K. Kupka, F. Bouamrance, C. Cremers, S. Megtert, Mircofabrication: LIGA-X and applications, Applied Surface Science, 164, 97-110, 2000.
[3] Dario, R. Vallegg, M. C. Carrozza, M. C. Montesti, and M. Cocco, Microactuators for Microrobots: A Critical Survey, J. Micromech.Microeng, 2, 141-157, 1992
[4] Seiji Akita and Yoshikazu Nakayama, Structural stability of carbon nanotube tips on nanoindentation olycarbonate, Japan Journal of Application Physics, 40, 4289-4291, 2001
[5] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert and R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature, 384, 147, 1996
[6] H. Dai, N. Franklin, J. Han, Exploiting the properties of carbon nanotube for nanolithography, Applied Physics Letters, 73, 11, 1508, 1998
[7] H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura, S. H. Yoshimura, K. Takeyasu, Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid, Applied Physics Letters, 74, 26, 4061
[8] H. W. Kroto, J. R. Heath, C. O’Brien, R. F. Curl, R. E. Smalley, C60:Buckminsterfullerene, Nature, 318, 162-3,1985
[9] M. Ge, K. Sattler, Observation of fullerene cones, Chemical Physics Letters, 220, 192-196, 1994
[10] A. Garg, S. B. Sinnott, Effect of chemical functionalization on the mechanical properties of carbon nanotube, Chemical Physics Letters, 295, 273-278, 1998
[11] S. Akita, H. Nishijima, T. Kishida, Y. Nakayama, Nanoindentation of polycarbonate using carbon nanotube tips, Jpn. J. Appl. Phys., 39, 7086-7089, 2000
[12] B. I. Yakobson, C. J. Brabec, J. Bernholc, Nanomehanics of carbon tubes: Instabilities beyond linear response, Physical Review Letters, 76, 14, 1996
[13] A. Krishnan, E. Dujardin, M. Treacy, J. Hugdahl, S. Lynum, T. Ebbesen, Graphitic cone and the nucleation of curved carbon surfaces, Nature, 388, 451-453, 1997
[14] J. A. Jaszczak, G. W. Robinson, S. Dimovski, Y. Gogotsi, Naturally occurring graphite cones, Carbon, 41, 2085, 2003
[15] G. Zhang, X. Jiang, E. Wang, Tubular graphite cones, Science, 300, 472, 2003
[16] J. J. Li, C. Z. Gu, Q. Wang, P. Xu, Z. L. Wang, Z. Xu and X. D. Bai, Field emission from high aspect ratio tubular carbon cones grown on gold wire, Applied Physics Letters, 87, 143107, 2005
[17] G. Zhang, X. Jiang, E. Wang, Tubular graphite cones, Science, 300, 472, 2003
[18] L. H. Chen, J. F. AuBuchon, A. Grapin, C. Daraio, P. Bandaru, S. Jin, D. W. Kim, I. K. Yoo, C. M. Wahg, Control of carbon nanotube morphology by change of applied bias field during growth, Applied Physics Letters, 85, 22, 2004
[19] N. G. Shang and X. Jiang, Large-sized tubular graphite cones with nanotube tips, Applied Physics Letters, 87, 163102, 2005
[20] Q. Yang, W. Chen, C. Xiao, A. Hirose, R. Sammynaiken, Simultaneous growth of well-aligned diamond and graphitic carbon nanostructures through graphite etching, Diamond and Related Materials, 14, 1683-1687, 2005
[21] H. Park, S. Choi, S. Lee, K. H. Koh, Formation of graphite nanocones using metal nanoparticles as plasma etching masks, Journal of Vacuum Science Technology B, 22, 3, 2004
[22] S. P. Jordan, V. H. Crespi, Theory of Carbon Nanocones: Mechanical Chiral Inversion of a Micron-Scale Three-Dimensional Object, Physical Review Letters, 93, 255504, 2004
[23] O. A. Shenderova, B. L. Lawson, D. Areshkin, D.W. Brenner, Predicted structure and electronics properties of individual carbon nanocones and nanostructures assembled from nanocones, Nanotechnology, 12, 191-197, 2001
[24] Sérgio Azevedo, Effect of substitutional atoms in carbon nanocones, Physics Letters A, 325, 283-286, 2004
[25] I. C. Chen, L. H. Chen, A. Gapin, S. Jin, L. Yuan and S.H. Liou, Iron–platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging, Nanotechnology, 19, 075501, 2008
[26] J. X. Wei, K. M. Liew, X. Q. He, Mechanical properties of carbon nanocones, Applied Physics Letters, 91, 261901, 2007
[27] P. C. Tsai1 and T. H. Fang, A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones, Nanotechnology, 18, 105702, 2007
[28] C. Wei and D. Srivastava, Nanomechanics of carbon nanofibers: Structural and elastic properties, Applied Physics Letters, 85, 12, 2004
[29] S. Zhang, Z.Yao, S. Zhao, E. Zhang, Buckling and competition of energy nad entropy lead conformation of single-walled carbon nanocones, Applied Physics Letters, 89, 131923, 2006
[30] K. Tagami and M. Tsukada, Simulated non-contact AFM images of an alcohol molecule in an alkanethiol self-assembled monolayer, Nanotechnology, 18, 084005, 2007
[31] I. C. Chen, L. H. Chen, C. Orme, A. Quist, R. Lal and S. Jin, Fabrication of high-aspect-ratio carbon nanocone probes by electron beam induced deposition patterning, Nanotechnology, 17, 4322-4326, 2006
[32] G. Cao, X. Chen, Mechanisms of nanoindentation on single-walled carbon nanotubes: The effect of nanotube length, Journal of Material Research, 21, 4, 2006
[33] J. Y. Hsieh, L. S. Huang, C. Chen, H. C. Lo and C. C. Wang, Molecular dynamics simulation for nanoscale deep indentation of a copper substrate by single-walled carbon nanotube tips, Nanotechnology, 18, 415701, 2007
[34] N. Mmetropolis, A. W. Rosenblluth, M. N. Rosenblluth, A.H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092, 1953
[35] M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Oxford university press, New York, 1987
[36] D. W. Heermann, Computer simulation methods in theoretical physics, Springer-Verlag Berlin Heidelberg, Germany, 1986
[37] J. M. Haile, Molecular dynamics simulation: elementary method, John Wiely &Sons, Inc., USA, 1992
[38] J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics, J. Chem. Phys., 18, 817-829, 1950
[39] U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture, Science, 248, 454, 1990
[40] W. C. D. Cheong and L. C. Zhang, Molecular dynamics simulation of phase transformation in silicon monocrystals due to nano-indentation, Nanotechnology, 11, 173-180, 2000
[41] J. Y. Hsieh, S. P. Ju, S. H. Li and C. C. Hwang, Temperature dependence in nanoindentatoin of a metal substrate by a diamondlike tip, Physical Review B, 70, 195424, 2004
[42] J. M. Haile, Molecular dynamics simulation, elementary methods, John Wiley & Sons, Inc., 1992
[43] D. C. Rapaport, The art of molecular dynamics simulation, Cambridge University press, 1995
[44] D. Frenkel and B. Smit, Understanding molecular simulation, from algorithms to applications, Academic press, 1996
[45] G. C. Maitland, M. Rigby, E. B. Smith and W. A. Wakeham, Intermolecular forces, Oxford University Press, London, 1987
[46] T. Ito, K. Nishidate, M. Baba, et al., Pressure-controlled tight-binding molecular dynamics simulation of carbon nanotubes, J. Phys. Soc. Jpn., 70, 9 2593-2597, 1989
[47] J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics, J. Chem. Phys., 18, 817-829, 1950
[48] J. M. Haile, Molecular dynamics simulation, elementary methods, John Wiley&Sons, Inc., 1992
[49] K. Maekawa, and A. Itoh, Friction and tool wear in nano-scale machining- A molecular dynamics approach, Wear, 188, 115, 1995
[50] J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Lett., 56, 632, 1986
[51] J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37, 6991, 1988
[52] J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Phys. Rev. B, 38, 9902, 1988
[53] J. Tersoff, Modeling solid-state chemistry : Interatomic potentials for multicomponent systems, Phys. Rev. B, 39, 5566, 1989
[54] G. C. Abell, Empirical chemical pseudopotential theory of molecular and metallic bonding, Phys. Rev. B, 31, 6184, 1985
[55] V. Rosato, M. Guillope, and B. Legrand, Thermodynamics and structural properties of f.c.c. transition metals using a simple tight-binding model, Philosophical Magazine A, 59, 21, 1988
[56] F. Cleri, and V. Rosato, Tight-binding potentials for transition metals and alloys, Phys. Rev. B, 48, 22, 1993
[57] L. Verlet, Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159, 98, 1967
[58] L. Verlet, Computer “Experiments” on classical fluids. II. Equiliburum correlation functions, Phys. Rev. 165, 201, 1967
[59] R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, 1, Addison-Wesley Chapter 9, 1963
[60] W. C. Swope, H. C. Andersen, P. H. Berens and R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical cluster of molecules: Application to small water Clusters, J. Chem. Physics, 76, 637, 1982
[61] J. Haile, Molecular dynamics simulation: Elementary methods, John Wiley & Sons, Inc., New York, 1997
[62] D. Papaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997