簡易檢索 / 詳目顯示

研究生: 施智筌
Shih, Zhi-Cyuan
論文名稱: 超音波空蝕敲擊技術之研究
Study of ultrasonic cavitation peening technique
指導教授: 王逸君
Wang, Yi-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 表面機械處理超音波空蝕敲擊有限元素法
外文關鍵詞: Mechanical surface treatment, Ultrasonic cavitation peening, Finite element method
相關次數: 點閱:71下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 敲擊法是使用最廣泛的表面機械處理或應力改質技術,其目的在於使材料表層產生壓縮殘留應力,用以消除機械元件或結構的應力侵蝕裂化,提高材料的負載強度及疲勞壽命。本研究利用有限元素軟體的分析,建立超音波空蝕敲擊系統,利用空蝕汽泡反覆崩裂時所產生的應力波,造成材料產生敲擊效應,再利用位移平台設計敲擊路徑,並就不同頻率的空蝕場對敲擊的效果進行研究。實驗結果顯示敲擊路徑確實可增加敲擊之均勻性。

    Peening is the most common means for mechanical surface treatment or surface stress improvement. Compressive residual stress is introduced during the peening process so that stress corrosion cracking induced by tensile residual stress is eliminated and the yield stress and tensile strength as well as the fatigue life of metallic materials are improved. In this study, finite element method is used for building ultrasonic cavitation peening(UCP) system. The violent collapses of the cavitation bubbles on the material surface producing stress waves which plastically deform the surface layer and induce compressive residual stress. Effects of the operational frequency and peening path of the UCP system will be closely studied. Experimental results show that the effects of peening are more uniform by using peening path.

    摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 符號說明 XIIII 第一章導論 1 1-1前言 1 1-2 文獻回顧 2 1-3 研究動機與本文架構 5 第二章 超音波空蝕敲擊原理與基礎 7 2-1 壓電效應 7 2-2 超音波原理 10 2-3 空蝕現象 14 2-4 超音波空蝕敲擊之相關參數 16 第三章 超音波空蝕敲擊系統之分析與設計 19 3-1 超音波換能器之特性 19 3-2 超音波換能器之有限元素分析模型 23 3-3 變幅桿之分析與設計 28 3-4 水中聲壓對超音波空蝕敲擊之系統影響 43 第四章 實驗架構與設備 50 4-1 實驗架構 50 4-2 換能器之冷卻系統 51 4-3 換能器之追頻程式 54 4-4 位移平台與路徑程式 57 4-5 雙頻超音波空蝕敲擊之實驗架構 64 第五章 超音波空蝕敲擊實驗結果與討論 67 5-1單頻敲擊效果評估 67 5-2雙頻敲擊效果評估 70 5-3 實驗結果與討論 71 第六章 結論與未來展望 74 6-1結論 74 6-2 未來展望 75 參考文獻 77 附錄A 平均功率與聲強計算 79 附錄B單位面積敲擊時間換算 82 自述 84

    [1].賴建宇, "高強度超音波與氣泡空蝕場應用於奈米粉體製備與養分萃取 ",國立成功大學機械工程研究所碩士論文, (2005)
    [2].K.S.Suslick,"The chemical effects of ultrasound”Scientific American”,Vol.2, pp.80-86, (1989)
    [3].W.T. Richards and A.L.Loomis,“The chemical effects of high frequency sound waves l.A Preliminary survey.” J. Am. Chem. Soc., Vol.49, No 12, pp.3068-3100,(1927)
    [4].T.G. Leighton, “Bubble population phenomena in acoustic cavitation”, Ultrasonics Sonochemistry, Vol.2, (1994)
    [5].P.R. Gogate and A.B. Pandit, “Sonochemical Reactors: Scale Up Aspects,” Ultrasonics Sonochemistry“, Vol.11, pp.105-117, (2004)
    [6].S Curtis, ER de los Rios,CA Rodopoulos,A Levers, “Analysis of the effects of controlled shot peening on fatigue damage of high strength aluminum alloys,“ International Journal of Fatigue, Vol.25, No 1, 25(1), pp.59-66, (2003)
    [7].JE Masse ,G Barreau , “Laser generation of stress waves in metal, Surface & Coatings Technology, “ Vol.70, No.2, pp.231-234 (1995)
    [8].P Peyre, X Scherpereel,L Berthe,C Carboni,R Fabbro,G Beranger, C Lemaitre, “Surface modifications induced in 316L steel by laser peening and shot-peening.“ Influence on pitting corrosion resistance, Materials Science and Engineering A, Vol.280, No.2, pp.294-302, (2000)
    [9].CS Montross, T Wei, L Ye, G Clark, YW Mai, “Laser shock processing and its effects on microstructure and properties of metal alloys: a review,“ International Journal of Fatigue, Vol.24, No.10, pp.1021-1036, (2002)
    [10].P Peyre, A Sollier, I Chaieb, L Berthe, E Bartnicki, C Braham, R Fabbro , “FEM simulation of residual stresses induced by laser peening,“ European Physical Journal-Applied Physics, Vol.23, No.2, pp.83-88, (2003)
    [11].ES Statnikov, OV Korolkov, VN Vityazev,“Physics and mechanism of ultrasonic impact,“ Ultrasonics, Sup.44, pp.533-538, (2006)
    [12].D Odhiambo , H Soyama , “Cavitation shotless peening for improvement of fatigue strength of carbonized steel, “ International Journal of Fatigue, Vol.25, No.9-11, pp.1217-1222 (2003)
    [13].H Soyama, JD Park , M Saka , “Use of cavitating jet for introducing compressive residual stress,“ Journal of Manufacturing Science And Engineering-Transactions of The ASME, Vol.122, No.1 , pp.83-89 (2000)
    [14].M Turski, S Clitheroe, AD Evans,C Rodopoulos,DJ Hughes, PJ Withers ,“Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments,“ Applied Physics A, 99,549-556 (2010)
    [15].T.G.Leighton,“What is ultrasound?”,Progress in Biophysics and Molecular Biology, Vol.93, pp.3-83, (2007)
    [16].L.E.Kinsler,A.R.Frey,A.B,Coppens,and J,V.Sander,”Fundamentals of Acoustic”,3rd edition,John Wiley&Sons, (1982)
    [17].B.Toukoniitty,J-P.Mikkola,D.Yu.Murzin,and T.Salmi,”Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions”,General 279 ,pp.1-22, (2005)
    [18]. 施純寬, "核能技術主軸專案計畫-核能電廠安全分析與監測技術開發 "行政院國家科學委員會專題研究計畫書,(2013)
    [19].賴耿陽,“超音波工學理論實務”,復漢出版社, (2001)
    [20].T.J.Mason and J.P.Lorimer.”Applied Sonochemistry. The Uses of Power Ultrasound in Chemistry and Processing”,Wiley-VCH (2002)
    [21].溫傅亮等人”藍杰文振動子共振腔體設計與動態行為之研究”第十三屆中 華民國振動與噪音學術研討會,(2005)
    [22].徐鈺翔, "40-kHz 浸水式聲化學反應器共振空蝕模態之分析與實驗 "國 立成功大學機械工程研究所 碩士論文 (2011)
    [23].徐偉恩, "超音波空蝕敲擊技術之初探 ",國立成功大學機械工程研究所 碩士論文 (2012)

    下載圖示 校內:2019-04-11公開
    校外:2019-04-11公開
    QR CODE