研究生: |
劉欣宜 Liu, Hsin-Yi |
---|---|
論文名稱: |
探討黃韌帶退化對其生物力學性質與組織組成的影響 Investigate the effect of degeneration of ligamentum flavum on its biomechanical properties and tissue compositions |
指導教授: |
鄭友仁
Jeng, Yeau-Ren |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 129 |
中文關鍵詞: | 黃韌帶退化 、奈米壓痕 、拉曼光譜 、生物力學特性 、化學成分 、生物學 、組織學 、放射學 |
外文關鍵詞: | Degeneration of Ligamentum Flavum, Nanoindentation, Raman Spectroscopy, Biomechanical properties, Chemical composition, Biology, Histology, Radiology |
相關次數: | 點閱:130 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黃韌帶是以彈性纖維與膠原纖維作為其主要的細胞外基質,尤其彈性纖維的佔比是所有韌帶中最高的,所以是以黃韌帶著稱。黃韌帶的主要作用是限制脊柱過度屈曲,穩定並保護著脊柱。隨著年齡的增長,黃韌帶的彈性與柔韌性不如以往,要延緩其退化,了解黃韌帶的發病機制非常重要。
本論文主要在探討黃韌帶在機械應力下引起機械性質和組織成分的改變,利用奈米壓痕儀測得黃韌帶之彈性折合模數、表面硬度和黏彈性,而Tan-Delta 表示黏彈性材料的滯後現象,以及利用拉曼光譜學對黃韌帶的組織成分進行定量分析,特別是與纖維化、軟骨化、鈣化和骨化相關的化學成分的變化,闡明黃韌帶的組織成分對生物力學的影響。為了提升實驗數據的可信度,將實驗數據與臨床厚度做迴歸分析,以了解黏彈性與厚度之間是否具備相關性。除了分析組織成分外,亦用其他依據來輔助判斷黃韌帶退化的嚴重程度,如多光子顯微技術、影像學表現的分析與臨床問卷之回饋,用以協助醫生進行初步診斷,以更省時的方式為患者做出臨床診斷。
綜觀所有實驗可以得到以下數個結論,黃韌帶從背側開始退化,背側的彈性纖維會先行變性,這與文獻上的結論相同。當膠原纖維生成豐富的狀況下,彈性折合模數與表面硬度會上升,損失模數下降導致黏彈性降低。再透過黃韌帶的組織成分與生物力學做迴歸分析,由於黃韌帶退化,產生大量I 型和III 型膠原纖維,而I 型和III 型膠原纖維中的鍵結中以酰胺I表現出的鍵結強度最強,因此膠原結構的變化的主要可能是造成粘彈性改變的重要因素。通過臨床常見之消炎止痛藥如選擇性第二型環氧合酶抑製劑可抑制纖維化,從文獻中可知它能成為改善黃韌帶黏彈性之治療手法,防止韌帶進一步退化。其他輔助醫生臨床判斷的方法如多光子顯微成像和動態滑移可以作為黃韌帶退化的依據。至於臨床問卷,隨著退化程度的加劇,平均歐式失能量表的得分略有增加,得分越高表明患者對日常生活能力受到背痛影響的程度越高;平均身體機能指數下降,得分越低表明患者無法自主生活的程度越高。
The ligamentum flavum is mainly composed of elastic fibers and collagen fibers as the main extracellular matrix, especially the proportion of elastic fibers is the highest among all ligaments, so it is known as the ligamentum flavum. The main function of the ligamentum flavum is to limit the excessive flexion of the spine, stabilize and protect the spine. With aging, the elasticity and flexibility of the ligamentum flavum is not as good as before. To delay its degeneration, it is very important to understand the pathogenesis of the ligamentum flavum.
This thesis mainly discusses the changes of mechanical properties and tissue composition of the ligamentum flavum caused by mechanical stress. The reduced elastic modulus, surface hardness and viscoelasticity of the ligamentum flavum were measured by nanoindentation instrument, and Tan-Delta indicates the hysteresis of viscoelastic materials; the tissue compositions of the ligamentum flavum was quantitatively analyzed by Raman spectroscopy, especially the changes of the chemical composition related to fibrosis, chondrometaplasia, calcification and ossification. To elucidate the biomechanical influence of the tissue composition of the ligamentum flavum. In order to improve the credibility of the experimental data, regression analysis was performed on the experimental data and clinical thickness to understand whether there is a correlation between viscoelasticity and thickness. In addition to the analysis of tissue compositions, other evidences are also used to assist in judging the severity of ligamentum flavum degeneration, such as multiphoton microscopy, analysis of radiology and feedback from clinical manifestations, to assist doctors in making an initial diagnosis and save time to make a clinical diagnosis for the patient.
Looking at all the experiments, the following conclusions can be drawn. The ligamentum flavum degenerates from the dorsal side, and the elastic fibers on the dorsal side will degenerate first, which is the same conclusion as mentioned in the literature. When collagen fibers are abundantly produced, the reduced elastic modulus and surface hardness increase, and the loss modulus decreases, resulting in a decrease in Tan-Delta. Through the regression analysis of the tissue compositions and biomechanics of the LF, a large number of type I and type III collagen fibers are produced due to the degeneration, and among the bonds in type I and type III collagen fibers, amide I exhibits the strongest bond strength, so the change of collagen structure may be an important factor causing the change of viscoelasticity. Common clinical anti-inflammatory and analgesic drugs such as selective COX-2 inhibitors can inhibit fibrosis. It is known from the literature that it can be a treatment method to improve the viscoelasticity of the ligamentum flavum and prevent further degeneration of the ligamentum flavum. Other methods to assist doctors in clinical judgment, such as multiphoton microscopy and dynamic slip, can be used as the basis for ligamentum flavum degeneration. As for the clinical questionnaires, as the degree of degeneration intensified, the score of the mean Oswestry Disability Index increased slightly, with higher scores of the mean Oswestry Disability Index indicating a greater impact of back pain on patients' activities of daily living; the score of the mean physical function decreased, with lower scores of the mean physical function indicating a greater degree of inability to live independently.
[1] K. Kubo, H. Kanehisa, Y. Kawakami, and T. Fukunaga, “Influence of static stretching on viscoelastic properties of human tendon structures in vivo,” J. Appl. Physiol., vol. 90, no. 2, pp. 520–527, Feb. 2001, doi: 10.1152/jappl.2001.90.2.520.
[2] Kosaka H. et al., “Pathomechanism of Loss of Elasticity and Hypertrophy of Lumbar Ligamentum Flavum in Elderly Patients With Lumbar Spinal Canal Stenosis,” Spine, vol. 32, no. 25, Art. no. 25, Dec. 2007, doi: 10.1097/BRS.0b013e31815b650f.
[3] Y. Yabe et al., “Decreased elastic fibers and increased proteoglycans in the ligamentum flavum of patients with lumbar spinal canal stenosis,” J. Orthop. Res., vol. 34, no. 7, pp. 1241–1247, 2016, doi: 10.1002/jor.23130.
[4] H. Kosaka et al., “Pathomechanism of Loss of Elasticity and Hypertrophy of Lumbar Ligamentum Flavum in Elderly Patients With Lumbar Spinal Canal Stenosis,” Spine, vol. 32, no. 25, pp. 2805–2811, Dec. 2007, doi: 10.1097/BRS.0b013e31815b650f.
[5] D. Viejo-Fuertes, D. Liguoro, J. Rivel, D. Midy, and J. Guerin, “Morphologic and histologic study of the ligamentum flavum in the thoraco-lumbar region,” Surg. Radiol. Anat. SRA, vol. 20, no. 3, pp. 171–176, 1998, doi: 10.1007/BF01628891.
[6] T. A. Wynn, “Fibrotic disease and the T(H)1/T(H)2 paradigm,” Nat. Rev. Immunol., vol. 4, no. 8, pp. 583–594, Aug. 2004, doi: 10.1038/nri1412.
[7] C. Lu, Z. Liu, H. Zhang, Y. Duan, and Y. Cao, “Proliferation effect of ligamentum flavum cells induced by transforming growth factor β 1 and its effect on connective tissue growth factor,” Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi Zhongguo Xiufu Chongjian Waike Zazhi Chin. J. Reparative Reconstr. Surg., vol. 33, pp. 883–888, Jul. 2019, doi: 10.7507/1002-1892.201812016.
[8] M. A. Piccinin and J. Schwartz, “Histology, Verhoeff Stain,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2022. Accessed: Jul. 23, 2022. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK519050/
[9] G. Schulze-Tanzil, “Intraarticular Ligament Degeneration Is Interrelated with Cartilage and Bone Destruction in Osteoarthritis,” Cells, vol. 8, no. 9, p. 990, Aug. 2019, doi: 10.3390/cells8090990.
[10] T. Ichinohe et al., “Degenerative changes of the cranial cruciate ligament harvested from dogs with cranial cruciate ligament rupture,” J. Vet. Med. Sci., vol. 77, no. 7, pp. 761–770, 2015, doi: 10.1292/jvms.14-0383.
[11] G. Chen, C. Deng, and Y.-P. Li, “TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation,” Int. J. Biol. Sci., vol. 8, no. 2, pp. 272–288, 2012, doi: 10.7150/ijbs.2929.
[12] K. Hoshi, N. Amizuka, T. Sakou, T. Kurokawa, and H. Ozawa, “Fibroblasts of spinal ligaments pathologically differentiate into chondrocytes induced by recombinant human bone morphogenetic protein-2: Morphological examinations for ossification of spinal ligaments,” Bone, vol. 21, no. 2, pp. 155–162, Aug. 1997, doi: 10.1016/S8756-3282(97)00106-3.
[13] A. C. Carreira, G. G. Alves, W. F. Zambuzzi, M. C. Sogayar, and J. M. Granjeiro, “Bone Morphogenetic Proteins: Structure, biological function and therapeutic applications,” Arch. Biochem. Biophys., vol. 561, pp. 64–73, Nov. 2014, doi: 10.1016/j.abb.2014.07.011.
[14] M. Roet, J. K. H. Spoor, M. de Waal, M. J. Kros, S. B. Harhangi, and R. Dammers, “Extensive calcification of the ligamentum flavum causing cervical myelopathy in a Caucasian woman,” SpringerPlus, vol. 5, no. 1, p. 1927, Nov. 2016, doi: 10.1186/s40064-016-3633-z.
[15] S. Orzechowska, R. Świsłocka, and W. Lewandowski, “Model of Pathological Collagen Mineralization Based on Spine Ligament Calcification,” Materials, vol. 13, no. 9, Art. no. 9, Jan. 2020, doi: 10.3390/ma13092130.
[16] D. K. Ahn, S. Lee, S. H. Moon, K. H. Boo, B. K. Chang, and J. I. Lee, “Ossification of the Ligamentum Flavum,” Asian Spine J., vol. 8, no. 1, pp. 89–96, Feb. 2014, doi: 10.4184/asj.2014.8.1.89.
[17] 袁佳濱, Y. Jia-bin, 孫凱強, S. U. N. Kai-qiang, 史建剛, and S. H. I. Jian-gang, “骨形態發生蛋白2在黃韌帶骨化發生和發展中的作用,” Apr. 20, 2018. http://html.rhhz.net/dejydxxb/html/2018/4/20170843.htm (accessed Jun. 17, 2022).
[18] B. C. Chakraborty and D. Ratna, “Chapter 3 - Viscoelasticity,” in Polymers for Vibration Damping Applications, B. C. Chakraborty and D. Ratna, Eds. Elsevier, 2020, pp. 69–141. doi: 10.1016/B978-0-12-819252-8.00003-3.
[19] K. H. Yang, “Chapter 5 - Material Laws and Properties,” in Basic Finite Element Method as Applied to Injury Biomechanics, K.-H. Yang, Ed. Academic Press, 2018, pp. 231–256. doi: 10.1016/B978-0-12-809831-8.00005-2.
[20] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., vol. 7, no. 6, pp. 1564–1583, Jun. 1992, doi: 10.1557/JMR.1992.1564.
[21] S. Brinckmann and R. Schwaiger, “Towards enhanced nanoindentation by image recognition,” J. Mater. Res., vol. 36, no. 11, pp. 2266–2276, Jun. 2021, doi: 10.1557/s43578-021-00173-x.
[22] R. E. Smallman and A. H. W. Ngan, “Chapter 5 - Characterization and Analysis,” in Modern Physical Metallurgy (Eighth Edition), R. E. Smallman and A. H. W. Ngan, Eds. Oxford: Butterworth-Heinemann, 2014, pp. 159–250. doi: 10.1016/B978-0-08-098204-5.00005-5.
[23] “Instrumented indentation testing (IIT) :: Anton Paar Wiki,” Anton Paar. https://wiki.anton-paar.com/tw-zh/instrumented-indentation-testing-iit/ (accessed Oct. 17, 2022).
[24] M. A. Meyers and K. K. Chawla, “Mechanical Behavior of Materials,” Higher Education from Cambridge University Press, Nov. 06, 2008. https://www.cambridge.org/highereducation/books/mechanical-behavior-of-materials/48AD6E15E989D76D5DAF9926123137CF (accessed Oct. 17, 2022).
[25] K. Dyamenahalli, A. Famili, and R. Shandas, “3 - Characterization of shape-memory polymers for biomedical applications,” in Shape Memory Polymers for Biomedical Applications, L. Yahia, Ed. Woodhead Publishing, 2015, pp. 35–63. doi: 10.1016/B978-0-85709-698-2.00003-9.
[26] “Peptides vs Proteins,” Peptide Information, Aug. 07, 2019. https://www.peptidesciences.com/information/peptides-vs-proteins/ (accessed Oct. 17, 2022).
[27] G. Karki, “Level of structural organization of protein,” Online Biology Notes, Sep. 10, 2019. https://www.onlinebiologynotes.com/level-of-structural-organization-of-protein/ (accessed Oct. 17, 2022).
[28] W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science, vol. 248, no. 4951, pp. 73–76, Apr. 1990, doi: 10.1126/science.2321027.
[29] J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron., vol. 10, no. 5, pp. 435–439, Sep. 1978, doi: 10.1007/BF00620308.
[30] A. M. Larson, “Multiphoton microscopy,” Nat. Photonics, vol. 5, no. 1, Art. no. 1, Jan. 2011, doi: 10.1038/nphoton.an.2010.2.
[31] J. W. Birk et al., “Second Harmonic Generation Imaging Distinguishes Both High-Grade Dysplasia and Cancer from Normal Colonic Mucosa,” Dig. Dis. Sci., vol. 59, no. 7, pp. 1529–1534, Jul. 2014, doi: 10.1007/s10620-014-3121-7.
[32] R. Carter, “MRI vs. CT Scan; Diagnosing Spine & Neck Injuries & Degenerative Diseases | Joseph Spine Institute,” Aug. 21, 2017. https://josephspine.com/mri-vs-ct-scan-diagnosing-spine-neck-injuries-degenerative-diseases/ (accessed Nov. 28, 2022).
[33] A. K. Rathod and R. P. Dhake, “Radiographic Incidence of Lumbar Spinal Instability in Patients with Non-spondylolisthetic Low Backache,” Cureus, vol. 10, no. 4, Apr. 2018, doi: 10.7759/cureus.2420.
[34] T. Chatprem, R. Puntumetakul, J. Kanpittaya, J. Selfe, and G. Yeowell, “A diagnostic tool for people with lumbar instability: a criterion-related validity study,” BMC Musculoskelet. Disord., vol. 22, no. 1, p. 976, Nov. 2021, doi: 10.1186/s12891-021-04854-w.
[35] J. Chung et al., “Spontaneous Reduction Finding: Magnetic Resonance Imaging Evaluation of Segmental Instability in Spondylolisthesis,” Asian Spine J., vol. 6, pp. 221–6, Dec. 2012, doi: 10.4184/asj.2012.6.4.221.
[36] A. A. White and M. M. Panjabi, Clinical biomechanics of the spine, 2nd ed. Philadelphia: J. B. Lippincott, 1990.
[37] J. C. Fairbank and P. B. Pynsent, “The Oswestry Disability Index,” Spine, vol. 25, no. 22, pp. 2940–2952; discussion 2952, Nov. 2000, doi: 10.1097/00007632-200011150-00017.
[38] D. O’Neill and D. E. Forman, “The importance of physical function as a clinical outcome: Assessment and enhancement,” Clin. Cardiol., vol. 43, no. 2, pp. 108–117, 2020, doi: 10.1002/clc.23311.
[39] G. Stucki, L. Daltroy, M. H. Liang, S. J. Lipson, A. H. Fossel, and J. N. Katz, “Measurement properties of a self-administered outcome measure in lumbar spinal stenosis,” Spine, vol. 21, no. 7, pp. 796–803, Apr. 1996, doi: 10.1097/00007632-199604010-00004.
[40] C. E. Poletti, “Central lumbar stenosis caused by ligamentum flavum: unilateral laminotomy for bilateral ligamentectomy: preliminary report of two cases,” Neurosurgery, vol. 37, no. 2, pp. 343–347, Aug. 1995, doi: 10.1227/00006123-199508000-00025.
[41] J. Abbas et al., “Ligamentum Flavum Thickness in Normal and Stenotic Lumbar Spines,” Spine, vol. 35, no. 12, p. 1225, May 2010, doi: 10.1097/BRS.0b013e3181bfca15.
[42] V. S. Kolte, S. Khambatta, and M. V. Ambiye, “Thickness of the Ligamentum Flavum: Correlation with Age and Its Asymmetry-An Magnetic Resonance Imaging Study,” Asian Spine J., vol. 9, no. 2, pp. 245–253, Apr. 2015, doi: 10.4184/asj.2015.9.2.245.
[43] P. Schräder, D. Grob, B. Rahn, J. Cordey, and J. Dvorak, “Histology of the ligamentum flavum in patients with degenerative lumbar spinal stenosis,” Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc., vol. 8, pp. 323–8, Aug. 1999, doi: 10.1007/s005860050181.
[44] Yayama et al., “Pathogenesis of calcium crystal deposition in the ligamentum flavum correlates with lumbar spinal canal stenosis,” Clin. Exp. Rheumatol., vol. 23, no. 5, pp. 637–643, 2005.
[45] K. Sairyo et al., “Pathomechanism of ligamentum flavum hypertrophy: a multidisciplinary investigation based on clinical, biomechanical, histologic, and biologic assessments,” Spine, vol. 30, no. 23, pp. 2649–2656, Dec. 2005, doi: 10.1097/01.brs.0000188117.77657.ee.
[46] L. D. Muiznieks and F. W. Keeley, “Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective,” Biochim. Biophys. Acta BBA - Mol. Basis Dis., vol. 1832, no. 7, pp. 866–875, Jul. 2013, doi: 10.1016/j.bbadis.2012.11.022.
[47] C. Pollock, “Relationship between body mass and biomechanical properties of limb tendons in adult mammals | American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.” https://journals.physiology.org/doi/abs/10.1152/ajpregu.1994.266.3.R1016 (accessed Jan. 17, 2023).
[48] M. A. Lillie, G. J. David, and J. M. Gosline, “Mechanical Role of Elastin-Associated Microfibrils in Pig Aortic Elastic Tissue,” Connect. Tissue Res., vol. 37, no. 1–2, pp. 121–141, Jan. 1998, doi: 10.3109/03008209809028905.
[49] A. J. Bailey et al., “Elastic proteins: biological roles and mechanical properties,” Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 357, no. 1418, pp. 121–132, Feb. 2002, doi: 10.1098/rstb.2001.1022.
[50] C. M. Bellingham et al., “Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties,” Biopolymers, vol. 70, no. 4, pp. 445–455, 2003, doi: 10.1002/bip.10512.
[51] S. M. Mithieux, J. E. J. Rasko, and A. S. Weiss, “Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers,” Biomaterials, vol. 25, no. 20, pp. 4921–4927, Sep. 2004, doi: 10.1016/j.biomaterials.2004.01.055.
[52] K. Zhang et al., “Hypertrophy and Fibrosis of the Ligamentum Flavum in Lumbar Spinal Stenosis is Associated With Increased Expression of LPA and LPAR1,” Clin. Spine Surg., vol. 30, no. 3, pp. E189–E191, Apr. 2017, doi: 10.1097/BSD.0000000000000048.
[53] Z. Zheng et al., “CRLF1 Is a Key Regulator in the Ligamentum Flavum Hypertrophy,” Front. Cell Dev. Biol., vol. 8, p. 858, Sep. 2020, doi: 10.3389/fcell.2020.00858.
[54] I. Altun and K. Z. Yüksel, “Histopathological Analysis of Ligamentum Flavum in Lumbar Spinal Stenosis and Disc Herniation,” Asian Spine J., vol. 11, no. 1, pp. 71–74, Feb. 2017, doi: 10.4184/asj.2017.11.1.71.
[55] P. W. H. Cheung et al., “The paradoxical relationship between ligamentum flavum hypertrophy and developmental lumbar spinal stenosis,” Scoliosis Spinal Disord., vol. 11, no. 1, p. 26, Sep. 2016, doi: 10.1186/s13013-016-0088-5.
[56] T. Okuda et al., “The Pathology of Ligamentum Flavum in Degenerative Lumbar Disease,” Spine, vol. 29, no. 15, p. 1689, Aug. 2004, doi: 10.1097/01.BRS.0000132510.25378.8C.
[57] J. Jezek et al., “The role of vascularization on changes in ligamentum flavum mechanical properties and development of hypertrophy in patients with lumbar spinal stenosis,” Spine J., vol. 20, no. 7, pp. 1125–1133, Jul. 2020, doi: 10.1016/j.spinee.2020.03.002.
[58] Z.-M. Zhong and J.-T. Chen, “Phenotypic Characterization of Ligamentum Flavum Cells from Patients with Ossification of Ligamentum Flavum,” Yonsei Med. J., vol. 50, no. 3, pp. 375–379, Jun. 2009, doi: 10.3349/ymj.2009.50.3.375.
[59] H. A Hatem, K. K Jbara, and T. A Hamdan, “HISTOLOGICAL CHANGES OF LIGAMENTA FLAVA IN LUMBAR DISC HERNIATION AND SPINAL CANAL STENOSIS,” Basrah J. Surg., vol. 11, no. 2, pp. 24–37, Dec. 2005, doi: 10.33762/bsurg.2005.57509.
[60] M. Yoshida and T. Tamaki, “Pathology of Ossification of the Ligamentum Flavum,” in OPLL: Ossification of the Posterior Longitudinal Ligament, K. Yonenobu, T. Sakou, and K. Ono, Eds. Tokyo: Springer Japan, 1997, pp. 49–58. doi: 10.1007/978-4-431-67046-9_6.
[61] K. Uchida et al., “Ossification process involving the human thoracic ligamentum flavum: role of transcription factors,” Arthritis Res. Ther., vol. 13, no. 5, p. R144, 2011, doi: 10.1186/ar3458.
[62] F. Cornaz, J. Widmer, N. A. Farshad-Amacker, J. M. Spirig, J. G. Snedeker, and M. Farshad, “Intervertebral disc degeneration relates to biomechanical changes of spinal ligaments,” Spine J., vol. 21, no. 8, pp. 1399–1407, Aug. 2021, doi: 10.1016/j.spinee.2021.04.016.
[63] A. L. Nachemson and J. H. Evans, “Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum),” J. Biomech., vol. 1, no. 3, pp. 211–220, Aug. 1968, doi: 10.1016/0021-9290(68)90006-7.
[64] A. Mihara et al., “Tensile Test of Human Lumbar Ligamentum Flavum: Age-Related Changes of Stiffness,” Appl. Sci., vol. 11, p. 3337, Apr. 2021, doi: 10.3390/app11083337.
[65] M. E. Lee et al., “Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner,” Exp. Mol. Med., vol. 44, no. 9, pp. 536–544, Sep. 2012, doi: 10.3858/emm.2012.44.9.061.
[66] K. Esbona et al., “The Presence of Cyclooxygenase 2, Tumor-Associated Macrophages, and Collagen Alignment as Prognostic Markers for Invasive Breast Carcinoma Patients,” Am. J. Pathol., vol. 188, no. 3, pp. 559–573, Mar. 2018, doi: 10.1016/j.ajpath.2017.10.025.
[67] K. Esbona et al., “COX-2 modulates mammary tumor progression in response to collagen density,” Breast Cancer Res. BCR, vol. 18, p. 35, 2016, doi: 10.1186/s13058-016-0695-3.
[68] 김태환, “Fibrosis control using cyclooxygenase 2 inhibitor in ligamentum flavum,” Thesis, 연세대학교, 2018. Accessed: Nov. 30, 2022. [Online]. Available: https://ir.ymlib.yonsei.ac.kr/handle/22282913/166435
[69] Sairyo K. et al., “Lumbar Ligamentum Flavum Hypertrophy Is Due to Accumulation of Inflammation-Related Scar Tissue,” Spine, vol. 32, no. 11, p. E340, May 2007, doi: 10.1097/01.brs.0000263407.25009.6e.