| 研究生: |
蔡秉翰 Tsai, Ping-Han |
|---|---|
| 論文名稱: |
低導通電阻β相氧化鎵金氧半場效電晶體之研製 Low On-resistance β-Ga2O3 Metal-Oxide-Semiconductor Field Effect Transistor |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 氧化鎵 、β相氧化鎵金氧半場效電晶體 、四甲基氫氧化銨溶液 、原子層沉積法 、氧化鋁 、鉑閘極 、極寬能隙 |
| 外文關鍵詞: | Ga2O3, β-Ga2O3 MOSFET, TMAH treatment, Atomic layer deposition (ALD), Al2O3, Pt gate, Ultra-wide bangap |
| 相關次數: | 點閱:166 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
β相氧化鎵金氧半場效電晶體在製作高功率元件上有很大的潛力,因為它具有4.4-4.9 eV的極寬能隙,比氮化鎵和碳化矽的能隙都大。然而最關鍵的議題是要如何降低由寬能隙能障所導致的接觸電阻並得到好的歐姆接觸特性。在這篇論文中,我們利用高溫沉積後快速熱退火來取代已被普遍提出的方法,即在離子佈值之後以470度進行沉積後快速熱退火。如此一來我們可以得到傑出的導通電阻,範圍在35到70Ω.mm之間。此外,高功函數的鉑閘極被用來提升閘極能障高度並降低閘極漏電流。這樣一來就可以達成合理的開關比。TMAH表面處理以及閘極沉積後退火被用來改善表面粗糙度並降低缺陷和表面能態。接受TMAH表面處理以及閘極沉積後退火的鉑閘極β相氧化鎵金氧半場效電晶體在閘極電壓7V的時候最大電流密度可以達到210 mA/mm此時的導通電阻是65.3 Ω.mm。它的最大轉導密度達到8.59 mS/mm並且有10的5次方的開關比。此元件的崩潰電壓達到394V,大約是同維度平面氮化鎵金氧半高電子遷移率電晶體的三倍。
β-Ga2O3 metal–oxide–semiconductor field effect transistors (MOSFETs) show great potential in fabricating high power devices because of their ultra wide bandgap reaching 4.4-4.9 eV, which is larger than that of GaN and SiC. Nevertheless, the most crucial issues include lowering contact resistance caused by the wide bandgap barrier and obtaining good ohmic contact behavior. In this study, we use high temperature post deposition rapid thermal annealing (RTA) to substitute the commonly proposed method of ion implantation followed by post deposition 470°C RTA. Thus, the outstanding on-resistance(Ron) ranging from 35-70 Ω.mm is obtained. In addition, the high work function Pt gate is used in enhancing the gate barrier height and lowering the gate leakage current to achieve a reasonable on-off ratio. Tetramethylammonium hydroxide(TMAH) treatment and post gate annealing(PGA) are adopted to improve surface roughness and decrease defects and surface states. The Pt gate β-Ga2O3 MOSFET exhibits a maximun drain current density of 210 mA/mm at VG=7V. Its on-resistance(Ron) is 65.3 Ω.mm. The maximum transconductance(Gm) of 8.59 mS/mm and the on-off ratio up to 10 to 5 are achieved. The off-state breakdown voltage is 394V, which is nearly three times larger than the same dimension planar GaN MOS-HEMT.
[1] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,” Applied Physics Letters, vol. 100, no. 1, Art. no. 013504, Jan. 2012.
[2] M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics,” Applied Physics Letters, vol. 103, no. 12, Art. no. 123511, Sep. 2013.
[3] T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Japanese Journal of Applied Physics, vol. 54, no. 11, Art. no. 112601, Oct. 2015.
[4] M. Higashiwaki and G. H. Jessen, “Guest editorial: The dawn of gallium oxide microelectronics,” Applied Physics Letters, vol. 112, no. 6, Art. no. 060401, Feb. 2018.
[5] A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Letters, vol. 37, no. 7, pp. 902-905, Jul. 2016.
[6] B. B. Jayant, “Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Letters, vol. 10, no. 10, pp.455-457, Oct. 1989.
[7] A.Q. Huang, “New unipolar switching power device figures of merit,” IEEE Electron Device Letters, vol. 25, no. 5, pp.298-301, May 2004.
[8] Y. Kang, K. Krishnaswamy, H. Peelaers and C. G. Van de Walle, “Fundamental limits on the electron mobility of β-Ga2O3,” Journal of Physics: Condensed Matter, vol. 29, no. 23, Art. no. 234001, May 2017.
[9] Y. w. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, and J. S. Speck, “MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/Vs at room temperature,” APL Materials, vol. 7, no. 2, Art. no. 022506, Dec. 2018.
[10] F. A. Marino1, N. Faralli, D. K. Ferry, S. M. Goodnick and M. Saraniti, “Figures of merit in high-frequency and high-power GaN HEMTs,” Journal of Physics: Conference Series, vol. 193, no.1 , Art. no. 012040, Aug. 2009.
[11] K. Shenai, “The figure of merit of a semiconductor power electronics switch,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp.4216-4224, Oct. 2018.
[12] J.Y. Tsao, S. Chowdury, M.A. Hollis, D. Jena, N.M. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collao, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Advanced Electronic Materials, vol. 4, no. 1, pp. 965-1006, Dec. 2017.
[13] K. Tetzner, E. Bahat Treidel, O. Hilt, A. Popp, S. B. Anooz, G. Wagner, A. Thies, K. Ickert, H. Gargouri, and J. Wurfl, “Lateral 1.8 kV β-Ga2O3 MOSFET with 155 MW/cm2 power figure of merit,” IEEE Electron Device Letters, vol. 40, no. 9, pp. 1503–1506, Sep. 2019.
[14] Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” Journal of Crystal Growth, vol. 220, no. 4, pp. 510-514 , Dec. 2000.
[15] H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method,” Japanese Journal of Applied Physics, vol. 47, no. 11R, Art. no. 8504, Nov. 2008.
[16] K. Sasaki, A. Kuramata, T. Masui, E. G. Víllora, K. Shimamura, and S. Yamakoshi, “Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy,” Applied Physics Express, vol. 5, no. 3, Art. no. 035502, Mar. 2012.
[17] S. Rafique, L. Han and H. Zhao, “Ultrawide bandgap β-Ga2O3 thin films: Growths, properties and devices,” ECS Transactions, vol.80, no. 7, Art. no. 203, 2017.
[18] Y. Yao, S. Okur, L. A. M. Lyle, G. S. Tompa, T. Salagaj, N. Sbrockey, R. F. Davis, and L. M. Porter, “Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques,” Materials Research Letters, vol. 6, no. 5, pp. 268-275, Mar. 2018.
[19] C. Joishi, Y. Zhang, Z. Xia, W. Sun, A. R. Arehar, S. Ringel, S. Lodha, and S. Rajan, “Breakdown characteristics of β -(Al0.22Ga0.78)2O3/Ga2O3 field-plated modulation-doped field-effect transistors,” IEEE Electron Device Letters, vol. 40, no. 8, pp.1241-1244, Aug. 2019.
[20] M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V,” IEEE Electron Device Letters, vol. 37, no. 2, pp. 212–215, Feb. 2016.
[21] Y. Lv, H. Liu, X. Zhou, Y. Wang, X. Song, Y. Cai, Q. Yan, C. Wang, S. Liang, J. Zhang, Z. Feng, H. Zhou, S. Cai, and Y. Hao, “Lateral β-Ga2O3 MOSFETs with high power figure of merit of 277 MW/cm2,” IEEE Electron Device Letters , vol. 41, no. 4, pp. 537-540, Apr. 2020.
[22] Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures,” Applied Physics Letters, vol. 112, no. 17, Art. no. 173502, Apr. 2018.
[23] N. K. Kalarickal, Z. Xia, J. F. McGlone, Y. Liu, W. Moore, A. R. Arehart, S. A. Ringel, and S. Rajan, “High electron density β-(Al0.17Ga0.83)2O3/Ga2O3 modulation doping using an ultra-thin (1 nm) spacer layer,” Journal of Applied Physics, vol. 127, no. 21 , Art. no. 215706, Jun. 2020.
[24] S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan , “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Applied Physics Letters, vol. 111, no. 2 , Art. no. 023502, Jul. 2017.
[25] Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, and S. Rajan, “Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors,” Applied Physics Letters, vol. 112, no. 23, Art. no. 233503, Jun. 2018.
[26] K. Song, H. Zhang, H. Fu, C. Yang, R. Singh, Y. Zhao, H. Sun and S. Long, “Normally-off AlN/β-Ga2O3 field-effect transistors using polarization-induced doping,” Journal of Physics D: Applied Physics, vol. 53, no. 34, Art. no. 345107, Jun. 2020.
[27] M. A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren, and S. J. Pearton, “Perspective—opportunities and future directions for Ga2O3,” ECS Journal of Solid State Science and Technology, vol. 6, no. 5, pp.356, Apr. 2018.
[28] D. Shinohara and S. Fujita , “Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition,” Japanese Journal of Applied Physics, vol. 47, no. 9R, Art. no. 7311, Sep. 2008.
[29] R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3—H2O,” Journal of American Chemical Society, vol. 74, no. 3, pp.719-722, Feb. 1952.
[30] M. Higashiwaki, and S. Fujita, “Gallium oxide materials properties, crystal growth, and devices,” Springer Series in Materials Science, vol. 293, 2020.
[31] H. Dong, H. Xue, Q. He, Y. Qin, G. Jian, S. Long, and M. Liu, “Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material,” Journal of Semiconductors, vol. 40, no. 1, Art. no. 011802, 2019.
[32] X. Wen, H. Ming, J. Zhong, L. S. Bing, P. Tao, and L. Ming, “An overview of the ultrawide bandgap Ga2O3 semiconductor-based schottky barrier diode for power electronics application,” Nanoscale Research Letters , vol. 13, no.1, Art. no. 290 , Sep. 2018.
[33] X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu, and G. Du ,“Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition,” Applied Physics Letters, vol. 108, no.20, Art. no. 202103 , May 2016.
[34] F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, “Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire,” Inorganic chemistry, vol. 55, no. 22, pp. 12079-12084, Nov. 2016.
[35] M. Yu, C. Lv, J. Yu, Y. Shen, L. Yuan, J. Hu, S. Zhang, H. Cheng, Y. Zhang, R. Jia ,“High-performance photodetector based on sol–gel epitaxially grown α/β Ga2O3 thin films,” Materials Today Communications, vol. 25, Art. no. 101532, Dec. 2020.
[36] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi ,“Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors ,” Applied Physics Letters, vol. 90, no. 3, Art. no. 031912, Jan. 2007.
[37] A. K. Saikumar, S. D. Nehate, and K. B. Sundaram ,“Review—RF sputtered films of Ga2O3 ,” ECS Journal of Solid State Science and Technology, vol. 8, no. 7, Art. no. Q3064, Feb. 2019.
[38] S. J. Pearton, J. Yang, P. H. C. IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices ,” Applied Physics Reviews, vol. 5, no.1, Art. no. 011301, Jan. 2018.
[39] N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, and G. Jessen, “Ge-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Letters, vol. 38, no. 6, pp. 775-778, Jun. 2017.
[40] M. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi and M. Higashiwaki, “Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer,” Japanese Journal of Applied Physics, vol. 55, no. 12, Art. no. 1202B9, Oct. 2016.
[41] Y. Lv, H. Liu, Y. Wang, X. Fu, C. Ma, X. Song, X. Zhou, Y. Zhang, P. Dong, H. Du, S. Liang, T. Han, J. Zhang, Z. Feng, H. Zhou, S. Cai, and Y. Hao, “Oxygen annealing impact on β-Ga2O3 MOSFETs: Improved pinch-off characteristic and output power density,” Applied Physics Letters, vol. 117, no. 13, Art. no. 133503, Sep. 2020.
[42] L. Guo, S. Luan, H. Zhang, L. Yuan, Y. Zhang, and R. Jia, “Analytical model and structure of the multilayer enhancement-mode β-Ga2O3 planar MOSFETs,” IEEE Transactions on Electron Devices, vol. 69, no. 2, pp.682-689, Dec. 2021.
[43] H. Huang , Z. Ren, C. Chan, X. Li, “Wet etch, dry etch, and macetch of β-Ga2O3: A review of characteristics and mechanism,” Journal of Materials Research, vol. 36, pp. 4756–4770, Nov. 2021.
[44] H. Leea, H. Yunb, K. Shim, H. Parka, T. Jangc, S. Leed, C. Choia, “Improvement of dry etch-induced surface roughness of single crystalline β-Ga2O3 using post-wet chemical treatments,” Applied Surface Science, vol. 506, Art. no. 144673, Mar. 2020.
[45] A. P. Shah and A. Bhattacharya, “Inductively coupled plasma reactive-ion etching of β-Ga2O3: Comprehensive investigation of plasma chemistry and temperature,” Journal of Vacuum Science & Technology A, vol. 35, no.4, Art. no. 041301, May 2017.
[46] L. Zhang, A. Verma, H. Xing, and D. Jena, “Inductively-coupled-plasma reactive ion etching of single-crystal β-Ga2O3,” Japanese Journal of Applied Physics, vol. 56, no. 3, Art. no. 030304, Feb. 2017.
[47] C. Wang, J. Zhang, S. Xu, C. Zhang, Q. Feng, Y. Zhang, J. Ning, S. Zhao, H. Zhou and Y. Hao, “Progress in state-of-the-art technologies of Ga2O3 devices,” Journal of Physics D: Applied Physics, vol. 54, no. 24, Art. no. 243001, Mar. 2021.
[48] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts,” Applied Physics Express, vol. 6, no. 8, Art. no. 086502, Aug. 2013.
[49] M. Lee and R. L. Peterson, “Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3,” APL Materials, vol. 7, no. 2, Art. no. 022524, Feb. 2019.
[50] J. Chen, X. Li, H. Ma, W. Huang, Z. Ji, C. Xia, H. Lu, and D. Wei Zhang, “Investigation of the mechanism for ohmic contact formation in Ti/Al/Ni/Au contacts to β‑Ga2O3 nanobelt field-effect transistors,” ACS Applied Materials & Interfaces, vol.11, no. 35, pp. 32127−32134, Aug. 2019.
[51] Y. Huan, S. Sun, C. Gu, W. Liu1, S. Ding1, H. Yu, C. Xia and D. Zhang, “Recent advances in β-Ga2O3–metal contacts,” Nanoscale Research Letters, vol. 13, no. 1, pp. 1-10, Aug. 2018.
[52] Y. Yao, R. F. Davis, and L. M. Porter, “Investigation of different metals as ohmic contacts to β-Ga2O3: Comparison and analysis of electrical behavior, morphology, and other physical properties,” Journal of Electronic Materials, vol. 46, no. 4, pp.2053-2060, Nov. 2016.
[53] Y. Lv, X. Zhou, S. Long, X. Song, Y. Wang, S. Liang, Z. He, T. Han, X. Tan, Z. Feng, H. Dong, X. Zhou, Y. Yu, S. Cai, and M. Liu, “Source-field-plated β-Ga2O3 MOSFET with record power figure of erit of 50.4 MW/cm2,” IEEE Electron Device Letters, vol. 40, no. 1, pp. 83-86, Jan. 2019.
[54] N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, and G. Jessen, “Ge-doped β-Ga2O3 MOSFETs ,” IEEE Electron Device Letters , vol. 38, no. 6, pp. 775-778, Jun. 2017.
校內:2027-08-23公開