簡易檢索 / 詳目顯示

研究生: 張倞杰
Ching-Chieh, Chang,
論文名稱: 磁拘束電漿具共振磁場擾動的粒子傳輸動力與流體模型
kinetic and fluid modelling of particle transport for magnetic confinement plasma with resonance magnetic perturbation
指導教授: 西村泰太郎
Nishimura, Yasutaro
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 35
中文關鍵詞: 傳輸擾動磁場磁島雙絕熱方程式
外文關鍵詞: Transport, Stochastic magnetic field, Island, Double adiabatic.
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文主要為探討再 TOKAMAK 邊緣具混沌磁場下的粒子與熱的傳輸
    現象,內容包含 動力學理論數值模擬電子與質子的密度和溫度。值得注意
    的是在混沌磁場中依然有磁島存在,且對傳輸現象有重要影響。另一方面,被
    拘束粒子因為絕熱不變量存在而不受混沌磁場影響,所以對傳輸現象影響很小。
    經由將三維軌道投影至一維,我們以熱擴散方程式來研究此傳輸現象。這裡也
    使用了 Chew-Goldberger-Low (CGL) 流體模型以及 "雙絕熱方程式" 用以推
    導被拘束粒子的密度與溫度。

    This thesis investigates the particle and heat transport in the presence of stochas-
    tic magnetic field in a tokamak edge. The particles' density and temperature evolution,
    both ions and electrons, by kinetic computation is presented. It is suggested that the
    remnants of the magnetic islands in seemingly fully stochastic magnetic field plays
    an important role in regulating transport. On the other hand, the trapped particles,
    having their own adiabatic invariants are insensitive to magnetic stochasticity and do
    not contribute much to the transport. By projecting the orbit in full three dimensional
    space to one dimensional radial space, we investigate the transport phenomenon by
    diffusion type equations. Fluid model by hew-Goldberger-Low (CGL) model and the
    double adiabatic condition have been employed in providing theoretical analysis.

    1 Introduction 3 2 Magnetic configuration of tokamaks 6 2.1 Pseudo toroidal coordinates and magnetic field line equation . 6 2.2 Guiding center equation of motion . . . . . . . . . . . . . . . . 8 2.3 Computational results . . . . . . . . . . . . . . . . . . . . . . 11 3 Approximation by diffusion equation 19 3.1 Solutions of diffusion equation . . . . . . . . . . . . . . . . . . 20 3.2 Solutions of Burgers’ equation . . . . . . . . . . . . . . . . . . 24 4 Application of Chew-Goldberger-Low fluid model 28 5 Summary and discussions 34 List of Figures 2.1 Pseudo-toroidal coordinates . . . . . . . . . . . . . . . . . . . 7 2.2 Poincar´e plots of magnetic field lines. Electron density and temperature evolution. . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Poincar´e plots of magnetic field lines. Electron density and temperature evolution. A single poloidal mode (m = 9) is employed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Ion density and temperature evolution, same parameters as in Fig.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Ion density and temperature evolution, Br/B0 = 4.0 × 10−3. . 16 2.6 Ion density and temperature evolution, ε = 0.33. . . . . . . . . 17 2.7 Electron and ion diffusion coefficient. . . . . . . . . . . . . . . 18 3.1 Profile of diffusion equation. . . . . . . . . . . . . . . . . . . . 22 3.2 Diffusion equation with island effect. . . . . . . . . . . . . . . 23 3.3 The density and temperature evolution when the source particles are added. . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Burger’s equation time advanced. . . . . . . . . . . . . . . . . 26 3.5 An attempt to demonstrate convective effects in kinetic computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 Two dimensional profile of ion density n(r, θ) and parallel temperature Tk(r, θ). . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Time evolution of the fluid adiabatic invariant Tk(r, θ)B2/n2 for trapped particles. . . . . . . . . . . . . . . . . . . . . . . . 33

    [1] T. E. Evans, R. A. Moyer, P. R. Thomas, et al., Phys. Rev. Lett. 92,
    23 (2004).
    [2] T. E. Evans, R. A. Moyer, K. H. Burrell, et al., Nature Physics 2, 419
    (2006).
    [3] F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982).
    [4] S. I. Itoh and K. Itoh. Phys. Rev. Lett, 60 22 (1988).
    [5] T. W. Petrie, T. E. Evans, N. H. Brooks, et al., Nucl. Fusion 51, 073003
    (2011).
    [6] O. Schmitz, T. E. Evans, M. E. Fenstermacher, et al., Nucl. Fusion 52,
    043005 (2012).
    [7] A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978).
    [8] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics,
    2nd ed. (Springer, Berlin, 1992), P.21.
    [9] A. A. Ware, Phys. Rev. Lett. 25 1,(1970).
    [10] H. K. Park (Private communication, 2013).
    [11] A. H. Boozer, Phys. Fluids 24, 1999 (1981).
    [12] G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Royal Soc. London
    A 236, pp. 112-118. (1956).
    [13] R. G. Littlejohn, Journal of Plasma Phys. 29, 111 (1983)
    [14] K. Miyamoto, Plasma Physics for Nuclear Fusion, 2nd ed. (MIT Press,
    Cambridge, 1989), P.41.
    34[15] B. Huang, Y. Nishimura, and C.Z. Cheng, Journal of Plasma and Fusion
    Research 9, 3402060 (2014).
    [16] C. C. Chang, Y. Nishimura, and C. Z. Cheng, Contrib, Plasma Phys.
    54, 479 (2014).
    [17] H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459
    (1963).
    [18] Y. Nishimura, Comput. Phys. Commun. 182, 158 (2011).
    [19] M. Azumi, American Physical Society, Division of Plasma Physics,
    (1978).
    [20] Z. Chang and J. D. Callen, Nucl. Fusion 30, 219 (1990).
    [21] D. R. Nicholson, Introduction to Plasma Theory, 2nd ed. (Kreiger, Mal-
    abar, 1992), P.92.
    [22] Benjamin D. G. Chandran and Steven C. Cowley, Phys. Rev. Lett. 80,
    14 3077 (1998).
    [23] B. V. Chirikov, Physics Reports 52, 265 (1979).
    [24] A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR 98, 527 (1954).
    [25] M. Soler and J. D. Callen, Nucl. Fusion 19 703, (1979).
    [26] J. M. Burgers, Adv. Appl. Mech. 1, 171 (1948).
    [27] J. Fleischer and P.H. Diamond, Phys. Rev. E. 61, 3912 (2000).
    [28] J.D. Cole, Quart. Appl. Math, 9, (1951).
    [29] E. Hopf, Commun. Pure Appl. Math. 3, 201 (1950).
    [30] P. B. Synder, H.R. Wilson, J.R. Ferron, et al., Phys. Plasmas 9, 5 (2002).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE