| 研究生: |
顏佳莉 Yen, Chia-Li |
|---|---|
| 論文名稱: |
K(Nb1-xVx)O3陶瓷材料的製備、分析、及介電性質 Preparation, Characterization, and Dielectric Properties of K(Nb1-xVx)O3 Ceramic Materials |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | K(Nb1-xVx)O3 |
| 相關次數: | 點閱:42 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈮酸鉀 (KNbO3) 為一擁有良好電學特性之鈣鈦礦結構材料,過去對於鈮酸鉀相關的研究多著墨於其光學特性的應用上,近來由於其良好的壓電特性使得鈮酸鉀成為無鉛壓電材料開發的熱門人選之一。如同其他鈣鈦礦結構的鐵電材料,鈮酸鉀的許多物理性質預期會深受添加物的影響,故此次研究採結晶化學法選取前人未使用過的添加物,以 V5+ 作為取代物,研究取代後鈮酸鉀於燒結及電學特性的改變。本實驗採用一般的固相反應合成方法獲得 K(Nb1-xVx)O3 粉末。由實驗結果得知,添加 V5+ 後,出現 K(Nb1-xVx)O3 結晶相的溫度由 550℃ 提前至 500℃ ,而 800℃ 持溫 24 h 所得之 K(Nb1-xVx)O3 系統煆燒粉末的結晶溶解度小於 5 mole%,且於 V5+ 添加後之相轉換溫度及居禮溫度皆有上升的現象。進行燒結實驗時,各成分之最佳燒結體密度均在 93% 以上,而高溫與較長時間的持溫會使得晶粒發生異常成長的現象,並產生微裂縫使得密度無法提昇。於電性量測方面,添加後電阻係數明顯下降,而相對介電常數於 1 kHz 時因為空間電荷影響而有上升的現象,但於 1 MHz 量測之介電常數則下降。鐵電滯迴曲線及壓電性質量測時,因添加後導電度上升,故僅 KNbO3 有量測數據,其 Pr 值及 Ec 值分別為 0.36 mC/cm2 與 353.6 kV/cm,而 kp 與 kt 值分別為 23.8% 與 23.4%。
Potassium Niobate (KNbO3), a ferroelectric material with good electric properties, is of interest for researches in optical applications. Recently it has been reported that KNbO3 single crystal have large piezoelectric constants, and this make it to be one of the most promising candidates for lead-free piezoelectric applications. Like many other oxide ferroelectrics with the perovskite-type structure, physical characteristics of KNbO3 are expected to be influenced by doping. In this research, we study the effect on sintering behavior and dielectric properties after vanadium doped. The powder is prepared by conventional solid-state reaction. Experimental results show that synthesis temperature of K(Nb1-xVx)O3 could be lowered after V5+ doped, and the crystalline solubility of the system is smaller than 5 mole%, both of phase transition temperature and Curie temperature increase after doping. Relative density of K(Nb1-xVx)O3 ceramics could reach 93%, and would decrease because of abnormal grain growth after sintering at higher temperature for long soaking time. DC resistivity and dielectric constant at 1MHz are lower after doping, but become higher at 1 kHz because of space charge effect. Measurement data of Pr, Ec, kp, and kt of KNbO3 are 0.36 mC/cm2, 353.6 kV/cm, 23.8%, and 23.4%, respectively.
[1] G. Shirane, R. Newnham and R. Pepinsky, “Dielectric Properties and Phase Transitions of NaNbOe and (Na,K)NbO3,” Phys. Rev., 96, 1954, 581-588.
[2] G. Shirane, H. Danner, A. Pavlovic, and R. Pepinsky, “Phase Transitions in Ferroelectric KNbO3,” Phys. Rev. 93, 1954, 672-673.
[3] S.K. Kurtz and T.T. Perry, “A Powder Technique for the Evaluation of Nonlinear Optical Materials,” J. Appl. Phys. 39, 1968, 3798-3813.
[4] H. Odagawa and K. Yamanouchi, “Superhigh Electromechanical Coupling and Zero-Temperature Characteristics of KNbO3 and Wide Band Filter Applications,” Jpn. J. Appt. Phys., 37, 1998, 2929-2932.
[5] B. Jaffe, W. R. Cook, and Jr. and H. Jaffe, Piezoelectric Ceramics, William R. Cook, Jr. and Hans Jaffe Could Inc., Cleveland, Ohio, U. S. A., 1971.
[6] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons, New York, 1976.
[7] O. Muller and R. Roy, The Major Ternary Structural Families, Springer-Verlag, New York, 1974.
[8] A. Reisman, F. Holtzberg, S. Triebwasser, and M. Berkenblit, “Preparation of Pure Potassium Metaniobate,” J. Am. Chem. Soc., 78, 1956, 719-720.
[9] K. Kodaira, J. Shioya, S. Shimada, and T. Matsushita, “Sintering and Dielectric Properties of KNbO3,” J. mater. sci. lett., 1, 1982, 277-278.
[10] S. King and J. Shen, “Microstructures and Dielectric Properties of Pure and Doped KNbO3 Ceramics,” J. Am. Ceram. Soc., 73, 1990, 1449-1450.
[11] H. Ishii, H. Nagata, and T. Takenaka, “Morphotropic Phase Boundary and Electrical Properties of Bisumuth Sodium Titanate-Potassium Niobate Solid-Solution Ceramics,” Jpn. J. Appl. Phys., 40, 2001, 5660-5663.
[12] E. T. Wu, A. X. Kuang, and J. D. MacKenzie, “Hot-Pressed KTN Prepared from Ultrahomogeneous Oxide Powders Derived by Sol-Gel Technique. I. Powders,” pp. 388-390 in Proceedings of the Sixth IEEE International Symposium on Applications of Ferroelectrics, Lehigh University, Bethlehem, PA, 1986.
[13] A. Reisman and F. Holtzberg, “Phase Equilibria in the K2CO3-Nb2O5 by the Method of Differential Thermal Analysis,” J. Am. Chem. Soc., 77, 1955, 2115-2119.
[14] M. M. Amini and M. D. Sacks, “Synthesis of Potassium Niobate from Metal Alkoxides,” J. Am. Ceram. Soc., 74, 1991, 53-59.
[15] M. J. Kim and E. Matijevic, “Preparation and Characterization of Uniform Submicrometer Metal Niobate Particles: Part Ⅱ. Magnesium Niobate and Potassium Niobate,” J. Mater. Res., 7, 1992, 912-918.
[16] C. H. Lu, S. Y. Lo, and H. C. Lin, “Hydrothermal Synthesis of Nonlinear Optical Potassium Niobate,” Mater. lett., 34, 1998, 172-176.
[17] H. Ishii, H. Nagata, and T. Takenaka, “Morphotropic Phase Boundary and Electrical Properties of Bisumuth Sodium Titanate-Potassium Niobate Solid-Solution Ceramics,” Jpn. J. Appl. Phys. 40, 2001, 5660-5663.
[18] R. E. Jaeger and L. Egerton, “Hot Pressing of Potassium-Sodium Niobates,” J. Am. Ceram. Soc., 45, 1962, 209-213.
[19] C. G. Bergeron and S. H. Risbud, Introduction to Phase Equilibria in Ceramics, The American Ceramic Society Inc., Columbus, Ohio, 1984.
[20] L. Egerton and Dolores M. Dillon, “Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate,” J. Am. Ceram. Soc., 42, 1959, 438-442.
[21] G. H. Haertling, “Properties of Hot-Pressed Ferroelctric Alkali Niobate Ceramics,” J. Am. Ceram. Soc., 50, 1967, 329-330.
[22] S. Tashiro, H. Nagamatsu, and K. Nagata, “Sinterability and Piezoelectric Properties of KNbO3 Ceramics after Substituting Pb and Na for K,” Jpn. J. Appl. Phys., 41, 2002, 7113-7118.
[23] K. I. Kakimoto, I. Masuda, and H. Ohsato, “Ferroelectric and Piezoelectric Properties of KNbO3 Ceramics Containing Small Amounts of LaFeO3,” Jpn. J. Appl. Phys., 42, 2003, 6102-6105.
[24] 吳朗,電子陶瓷壓電,全欣科技圖書,1994。
[25] 廖繼滄,鈮酸鋰、鈮酸鈉、鈮酸鉀陶瓷系列之研製及其特性探討,國立成功大學電機工程研究所碩士論文,2002。
[26] C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure Type Materials, Ph. D. thesis, The Pennsylvania State University, 1990.
[27] Kiyoshi Okazaki, Ceramic Engineering for Dielectrics, Gakkensha Co., Tokyo, 1969.
[28] IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics, 1961, Proc. IRE, 49, 1961, 1161-1169.
[29] C. Lee, S. Lee, C. Sul, and S. Bae, “Frequency Dependence of AC Conductivities of KNb1-xVxO3 Single Crystals,” Physica B, 239, 1997, 316-321.