簡易檢索 / 詳目顯示

研究生: 劉冠廷
Liu, Kuan-Ting
論文名稱: 氮化鎵之低溫磊晶層及p型摻雜特性之研究
Low Temperature Growth and P-type Doping Studies of Gallium Nitride Epilayers
指導教授: 張守進
Chang, Shoou-Jinn
蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 171
中文關鍵詞: 共同摻雜p型摻雜促進遷移磊晶法分子束調變成長法低溫磊晶成長氮化鎵
外文關鍵詞: Co-doping, P-type doping, MEE, Modulated beam growth method, GaN, Low temperature growth
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的內容是利用射頻電漿輔助式分子束磊晶法(radio frequency plasma assisted molecular beam epitaxy, RF-MBE)成長及研究氮化鎵低溫磊晶層。我們提出一種新型的磊晶方式稱為「分子束調變成長法(modulated beam grown method)」,利用調變鎵分子束流量,於磊晶成長中交互成長Ga-enriched及N-enriched表面,在低溫730℃下獲得高品質之氮化鎵半導體。我們發現通常出現在低溫成長氮化鎵薄膜斷面上之縱向柱狀條紋消失,這些柱狀條紋結構可能是由於薄膜之成長主要是發生在垂直方向所導致,它將會造成氮化物元件之光、電等特性之退化。此外,相較於傳統的MBE磊晶成長法,我們也獲得較佳的表面平坦度以及5.7× 1016 cm-3非常低的殘留電子濃度和光致激發螢光光譜(photoluminescence, PL)特性。這些實驗結果歸因於分子束調變成長促進了磊晶之橫向成長所導致。另外,我們也使用交替供應鎵及氮原子之「促進遷移磊晶法(migration enhanced epitaxy, MEE)」,來成長低溫之氮化鎵薄膜。由實驗結果得知,使用MEE磊晶成長法於低溫600℃下成長之氮化鎵薄膜相較於傳統的MBE磊晶成長法,可獲得較佳之晶體特性。這是由於MEE磊晶成長法,可促進低溫成長中附加原子在晶體表面平台(terrace)遷移至段差(step)上的轉折(kink)處形成結晶(沿面成長;step flow growth)。同時我們也發現,由MEE磊晶法成長之氮化鎵薄膜品質和磊晶層之厚度有關。此現象可能是因為隨著成長時間之增加,晶粒尺寸逐漸長大後相互聚合所導致。

    此外,本論文之另一個主題是對於如何改善p型氮化鎵之傳導特性,分別利用磊晶成長中掺雜以及成長後離子佈植掺雜之方法作一系列之探討。我們以RF-MBE於磊晶成長中分別掺雜鎂和鈹原子,發現在相同成長條件之下,造成鈹掺雜氮化鎵材料p型傳導特性退化的原因是和氮化鎵表面極性之改變有關。當未掺雜或鎂掺雜之氮化鎵磊晶層成長於藍寶石(0001)面基板時,表面為氮極性(N-polarity),但掺雜鈹之氮化鎵磊晶層表面卻呈現鎵極性(Ga-polarity)。因此,我們利用控制基板材料極性,成功的長出電洞濃度為1.8 × 1017 cm-3之p型掺雜鈹之氮化鎵磊晶層。另外,我們也利用共同掺雜(co-doping)之方式,以離子佈值技術同時掺雜鎂和磷(Mg/P)、鎂和氮(Mg/N)、鈹和氮(Be/N)以及鈹和碳(Be/C)等系列之離子於氮化鎵薄膜。我們發現與一般單一受體掺雜之傳統方式相比,共同掺雜受體以及選擇之掺雜物在適當的掺雜物濃度比以及熱退火處理條件下,不僅能夠增加受體之活化率,同時也能降低半導體表面之能障高度。這些現象是由於自我補償效應以及氮空缺等表面缺陷之減少所導致。加入共同掺雜物之所以能夠有效填補氮空缺以及促進受體原子置換,是和所選擇的共同掺雜物原子和受體原子彼此間之相對位置有著極大的關係。另外,對於同時掺雜鎂和磷之氮化鎵試料,我們發現一種新的發光機制是由施體與等電子雜質捕獲中心-磷;結合而成的Donor-Isoelectronic pair(D-I pair)之PL光譜。對於共同掺雜鎂和氮之試料,我們獲得較高的鎂受體原子活化率約為~9.6%以及4.8×1018cm-3之電洞濃度。最後,由共同掺雜鈹和氮以及鈹和碳試料之PL實驗中,得到鈹之光學活化能為145~155 meV,證明鈹於氮化鎵中扮演著淺能階的受體原子。以上實驗結果顯示出,共同掺雜磷或氮和鎂原子以及氮或碳和鈹原子於氮化鎵薄膜,為一有效的方法來改善p型氮化鎵之傳導特性,同時也能降低表面之能障高度。對於p型半導體,表面能障高度之減少能促進載子穿越與金屬之接觸面,降低與金屬之接觸阻抗。

    In this dissertation, the low temperature growth and characterization of GaN epitaxy layers have been investigated by radio frequency plasma assisted molecular beam epiaxy (RF-MBE). A novel modulated beam growth method was proposed to alternately grow Ga-enriched and N-enriched surfaces during the growth for improving the crystal quality of the low temperature grown GaN layers. The experimental evidence was presented that the vertical striations in the cleaved sections, which are often observed in low temperature grown GaN layers and bring a significant degradation in the optical and electrical properties of nitride-based devices, have disappeared. We could achieve a low residual carrier concentration of 5.7 × 1016 cm-3 at the growth temperature as low as 730℃ and a better surface morphology, X-ray diffraction (XRD) and photoluminescence (PL) characteristics by using the modulated beam growth method compared with conventional MBE growth. These results could all be attributed to the enhanced lateral growth of the modulated beam growth method. Furthermore, the migration enhanced epitaxy (MEE) method involving an alternative supply of Ga atoms and N2 plasma was also used to grow GaN layers under low growth temperature. It was found that we could achieve the better crystalline characteristics of the GaN layers grown by MEE than by MBE at the growth temperature of 600℃. The observed results suggest the enhanced migration of surface adatoms from terrace to kink in the step during growth and the occurrence of a step flow growth. In addition, we also found that the crystalline characteristics of MEE growth were dependent on the thickness of GaN layers, which was probably due to the increase of grains size as growth time and coalescence each other.

    Another subject of this dissertation is the p-type doping study in GaN by the technics of the doping during epitaxial growth and post-growth ion implantation. It was found that the deterioration of p-type conductive characteristics in Be-doped GaN layers were related to the surface polarity change compared to Mg-doped GaN layers grown under the identical growth conditions by RF-MBE. When the undoped or Mg-doped GaN layers grown on a sapphire (0001) substrates, the surface polarity was N-terminated. However, Be-doped GaN layers always show Ga-terminated surfaces regardless of the polarity of the underlying layers. By growing Be-doped GaN on the Ga-terminated GaN surface, we have successfully grown Be-doped p-type GaN layer with a hole concentration of 1.8 × 1017 cm-3 at room temperature. Moreover, we also introduce co-doping method through ion implantation for improving p-type conductivity of GaN. Four kinds of co-implanted GaN samples including Mg/P, Mg/N, Be/N and Be/C have been systematically investigated compared with single acceptor doping. It was found that co-implanting acceptors with the selected dopants were not only to increase the activation efficiency of acceptors but also to decrease the surface barrier height under a proper dopant concentration ratio and post-annealing condition. These phenomena could be attributed to the reduction of self-compensation and the termination of N-vacancy related surface defects because the additional impurities may partially occupy on the N vacancies and enhancing the acceptors activation. The difference in the observed co-doping effects for various co-implanted samples was essentially dependent on the depths of additional dopants relative to those of acceptors. For the Mg/P co-implanted GaN, we found a new PL line as results of P-related transition, evidently due to the recombination of electrons from the shallow native donors with holes previously captured by isoelectronic P traps (D-I pair). Besides, a high activation efficiency of Mg acceptor and hole concentration were obtained to be ~9.6% and 4.8 × 1018 cm-3, respectively, for the Mg/N co-implanted sample. Based on the PL results of Be/N and Be/C co-implanted samples, we have found that the Be is an effective p-type dopant in GaN and have confirmed that the Be acceptor level (145~155 meV) is shallower than Mg one. These experimental results demonstrated that co-doping P or N with Mg atoms, and N or C with Be atoms in GaN is an effective method to improve p-type conductivity and to reduce the surface barrier height, which can help to decrease the metal contact resistivity to p-type GaN.

    Contents Abstract (in Chinese)……………………………… I Abstract (in English)……………………………… IV Acknowledgement……………………………………… VII Contents …………………………………………… VIII Table Captions……………………………………… XI Figure Captions……………………………………… XIII CHAPTER 1 Introduction 1.1 Background………………………………………… 1 1.2 Overview of This Dissertation………………… 10 References ……………………………………………… 10 CHAPTER 2 Epitaxial Growth and Doping Techniques in GaN 2.1 Epitaxial Growth Method ……………………… 19 2.1.1 Molecular Beam Epitaxy (MBE)……………… 20 2.1.2 Metalorganic Chemical Vapor Deposition (MOCVD)…………………………………………………… 27 2.2 Doping Techniques ……………………………… 30 2.2.1 Doping During Epitaxial Growth…………… 31 2.2.2 Post-Growth Doping by Ion Implantation… 32 References ……………………………………………… 34 CHAPTER 3 Low Temperature Growth of GaN by Modulated Beam Growth Method 3.1 Introduction ……………………………………… 49 3.2 A Novel Modulated Beam Growth Procedure … 51 3.3 Film Characterization ………………………… 53 3.3.1 In Situ Monitoring of Growth……………… 53 3.3.2 Film Morphology and Microstructure……… 54 3.3.3 Effects of Ga-flux and Timing Sequence… 55 3.3.4 Optical and Electrical Properties………… 56 3.4 Summary …………………………………………… 57 References ……………………………………………… 58 CHAPTER 4 Low Temperature Growth of GaN by Migration Enhanced Epitaxy (MEE) Method 4.1 Introduction ……………………………………… 71 4.2 MEE Growth Procedure …………………………… 73 4.3 Results and Discussion ………………………… 74 4.4 Summary …………………………………………… 77 References ……………………………………………… 78 CHAPTER 5 Doping During Epitaxial Growth for P-type GaN 5.1 Introduction ……………………………………… 87 5.2 Be-doped GaN Growth …………………………… 89 5.3 Influence of Polarity ………………………… 89 5.4 Electrical and Optical Properties ………… 93 5.5 Summary …………………………………………… 95 References ……………………………………………… 97 CHAPTER 6 Post-Growth Doping by Ion Implantation for P-type GaN 6.1 Introduction ……………………………………… 107 6.2 P Implantation in Mg-doped GaN ……………… 110 6.2.1 Material Preparation ………………………… 110 6.2.2 Mg-doped GaN without P Implantation……… 111 6.2.3 Mg-doped GaN with P Implantaion…………… 113 6.2.4 Surface Composition Characterization…… 117 6.3 Mg/N, Be/N and Be/C Co-implantation in GaN…122 6.3.1 Fabrication Procedure ……………………… 122 6.3.2 Mg/N Co-implanted GaN ……………………… 123 6.3.3 Be/N Co-implanted GaN ……………………… 126 6.3.4 Be/C Co-implanted GaN ……………………… 129 6.4 Summary …………………………………………… 133 References …………………………………………… 135 CHAPTER 7 Conclusion and Future Prospect ……… 163 Publication List ……………………………………… 167 Vita ……………………………………………………… 171

    CHAPTER 1

    [1] H. Morkoc, S. Strite, G. B. Gao, M.E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys. 76, 1363 (1994).
    [2] T. P. Chow and R. Tyagi, IEEE Trans. Electron. Dev. 41, 1481 (1994).
    [3] Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V.M. Phanse and J. M. Redwing, Appl. Phys. Lett. 74, 1266 (1998).
    [4] S. J. Pearton, F. Ren, A. P. Zhang and K. P. Lee, Mater. Sci. Eng. R30, 55 (2000).
    [5] R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan, A. O. Orlov, G. L. Snider and M. S. Shur, Appl. Phys. Lett. 72, 707 (1998).
    [6] Y. Uzawa, Z. Wang, A. Kawakami and B. Komiyama, Appl. Phys. Lett. 66, 1992 (1995).
    [7] T. D. Moustakas, T. Lei and R. J. Molnar, Physica B 185, 39 (1993).
    [8] J. M. Van Hove, R. Hickman, J. J. Klaassen, P. P. Chow and P. P. Ruden, Appl. Phys. Lett. 70, 282 (1997).
    [9] W. Gotz, L.T. Romano, J. Walker, N.M. Johnson and R. J. Molnar, Appl. Phys. Lett. 72, 1214 (1998).
    [10] C. Wetzel, D. Volm, B. K. Meyer, K. Pressel, S. Nilsson, E. N. Mokhov and P. G. Baranov, Appl. Phys. Lett. 65, 1033 (1994).
    [11] Y. A. Vodakov, E. N. Mokhov, A. D. Roenkov, M. E. Boiko and P. G. Baranov, J. Cryst. Growth 10, 183 (1998).
    [12] M. Ilegems, J. Cryst. Growth 13/14, 360 (1972).
    [13] M. Morita, S. Isogai, N. Shimizu, K. Tsubouchi and N. Mikohiba, Jpn. J. Appl. Phys. 19, L173 (1981).
    [14] H. Amano, N. Sawaki, I. Akasaki and Y. Toyada, Appl. Phys. Lett. 48, 353 (1986).
    [15] S. Keller, P. B. Keller, Y. F. Wu, B. Heying, D. Kapolnek, J. S. Speck, U. K. Mishra and S. P. DenBaars, Appl. Phys. Lett. 68, 1525 (1996).
    [16] S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
    [17] Y. Kato, S. Kitamura, K. Hiramatsu and N. Sawaki, J. Cryst. Growth 144, 133 (1994).
    [18] H. Marchand, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, S. DenBaars, J. S. Speck and U. K. Mishra, Mater. Res. Soc. Int. J. Nitride Semi Res. 3, 3 (1998).
    [19] R. J. Molnar, In Semiconductors and Semimetals, Vol. 57. J. Pankove and T. Moustakas, eds., New York: Academic Press (1998).
    [20] S. P. Denbaars and S. Keller, In Gallium Nitride (GaN) I, J. I. Pankove and T. D. Moustakas, eds., New York: Academic Press, Chapter 2 (1998).
    [21] O. Briot, J. P. Alexis, M. Tchounkeu and R. L. Aulombard, Materials Science and Engineering B43, 147 (1997).
    [22] R. J. Molnar, R. Singh and T. D. Moustakas, Appl. Phys. Lett., 66 268 (1995).
    [23] M. Johnson, S. Fujita, W. Rowland, W. Hughes, Y. H. He, N. El-Masry, J. Cook and J. Schetzina, J. Electron. Mater. 25, 793 (1996).
    [24] R. Madar, G. Jacob, J. Hallais and R. Frucgart, J. Cryst. Growth 31, 197 (1975).
    [25] J. Karpinski, S. Porowski and S. Miotkowska, J. Cryst. Growth 56, 77 (1982).
    [26] J. Burm, K. Chu, W. Davis, W. J. Schaff, L. F. Eastman and T. J. Eustis, Appl. Phys. Lett. 70, 464 (1997).
    [27] R. J. Molnar and T. D. Moustakas, Bull. Am. Phys. Soc. 38, 445 (1993).
    [28] W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, H. Amano and I. Akasaki, Appl. Phys. Lett. 67 2606 (1995).
    [29] H. Amano, M. Kito, K. Hiramatsu and I. Akaski, Jpn. J. Appl. Phys. 28, L2112 (1989).
    [30] S. Nakamura, T. Muskai, M. Senoh and N. Iwasa, Jpn. J. Appl. Phys. 31, L139 (1992).
    [31] S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. C. Zolper, C. Yuan and R.A. Stall, Appl. Phys. Lett. 67, 1435 (1995).
    [32] J. C. Zolper, R. G. Wilson, S. J. Pearton and R. A. Stall, Appl. Phys. Lett. 68, 1945 (1996).
    [33] O. Brandt, H. Yang, H. Kostal and K. Ploog, Appl. Phys. Lett. 69, 2707 (1996).
    [34] J. C. Zolper, J. Han, R. M. Biefeld, S. B. Van Deusen, W. R. Wampler, D. J. Reiger, S. J. Pearton, J. S. Williams, H. H.Tan and R. Stall, J. Electron. Mater. 27, 179 (1998).
    [35] Q. Z. Liu and S. S. Lau, Solid-State Electron. 42, 677 (1998).

    CHAPTER 2

    [1] H. Morkoc, S. Strite, G. Gao, M. Lin, B. Sverdlov and M. Burns, J. Appl. Phys. 76, 1363 (1994).
    [2] K. Ploog, In Crystal Growth, Properties and Applications. H. C. Freyhard, ed., Berlin: Springer-Verlag, Vol. 3, p. 73 (1980).
    [3] A. Y. Cho, Thin Solid Films, 10, 291 (1983).
    [4] A. C. Gossard, In Treatise on Material Science and Technology, Preparation and Properties of Thin Films. K. N. Tu and R. Rosenberg, eds., New York: Academic Press, 24, p. 13 (1982).
    [5] L. L. Chang and K. Ploog, Molecular Beam Epitaxy and Heterostructures, Boston: Martinus Nijhoff Publisher. (1985)
    [6] E. H. C. Parker, ed. The Technology and Physics of Molecular Beam Epitaxy. New York: Plenum Publishing Corp. (1986).
    [7] G. J. Davies and D. Williams, In The Technology and Physics of Molecular Beam Epitaxy, E. H. C. Parker, ed., Boston: Plenum Publishing Corp., 2, 15 (1986).
    [8] C. T. Foxon and J. J. Harris, eds. Molecular Beam Epitaxy. Amsterdam: North Holland (1987).
    [9] C. T. Foxon and B. A. Joyce, Growth and Characterization of Semiconductors. R. A. Stradling and P. C. Klipstein, eds., New York: Adam Hilger, p. 35 (1990).
    [10] K. Z. Gunther, Z. Naturforsch, 13a, 1081 (1958).
    [11] J. E. Davey and T. Pankey, J. Appl. Phys. 39, 1941 (1968).
    [12] L. Esaki and R. Tsu, IBM Research Development, 14, 61 (1970).
    [13] M. B. Panish, J. Electrochem. Soc., 127, 2729 (1980).
    [14] A. R. Calawa, Appl. Phys. Lett. 38, 701 (1981).
    [15] T. D. Moustakas, MRS Bulletin XIII, p. 29 (Nov. 1988).
    [16] R. M. Park, J. Vac. Sci. Tech. A10, 701 (1992).
    [17] R. P. Vaudo, Z. Yu, J. W. Cook, and J. F. Schezina, Opt. Lett. 18, 1843 (1993).
    [18] H. Liu, A. C. Frenkel, J. G. Kim, and R. M. Park, J. Appl. Phys. 74, 6124 (1993).
    [19] J. F. Schetzina, Mat. Res. Soc. Proc. 395, 123 (1995).
    [20] S. E. Hooper, C. T. Foxon, T. S. Cheng, L. C. Jenkins, D. E. Lacklison, J. W. Orton, T. Bestwick, A. Kean, M. Dawson, and G. Duggan. J. Cryst. Growth, 155, 157 (1995).
    [21] O. Brandt, H. Yang, B. Jenichen, Y. Suzuki, L. Daweritz, and K. H. Ploog, Phys. Rev. B52, R2253 (1995).
    [22] S. Guha, N. A. Bojarczuk, and D. W. Kisker, Appl. Phys. Lett. 69, 2879 (1996).
    [23] S. E. Hooper, C. T. Foxon, T. S. Cheng, N. L. C. Jeffs, D. E. Lacklison, M. Dawson, and G. Duggan. In III-V Nitrides. F. A. Ponce, T. D. Moustakas, I. Akasaki, B. A. Monemar, eds. Pittsburgh, PA: Mater. Res. Soc. Proc. 449, 9. 325 (1997).
    [24] H. Riechert, R. Averbeck, A. Graber, M. Schienle, V. Straub, and H. Tews, In III-V Nitrides. F. A. Ponce, T. D. Moustakas, I. Akasaki, and B. A. Monemar, eds., Pittsburgh, PA: Mater. Res. Soc. Proc., 449, 149 (1997).
    [25] R. Beresford, K. S. Stevens, Q. Cui, A. Schwarzman, and H. Cheng, In III-V Nitrides. F. A. Ponce, T. D. Moustakas, I. Akasaki, and B. A. Monemar, eds., Pittsburgh, PA: Mater. Res. Soc. Proc., 449, p. 361 (1997).
    [26] H. M. Manasevit, Appl. Phys. Lett., 12, 156 (1968).
    [27] H. M. Manasevit, F. Erdmann and W. Simpson, J. Electrochem. Soc., 118, 1865 (1971).
    [28] S. P. Denbaars and S. Keller, In Gallium Nitride (GaN) I, J. I. Pankove and T. D. Moustakas, eds., New York: Academic Press, Chapter 2 (1998).
    [29] R. J. Molnar, In Semiconductors and Semimetals, Vol. 57. J. Pankove and T. Moustakas, eds., New York: Academic Press (1998).
    [30] S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H.C. Lee, J. Cryst. Growth. 77, 188 (1986).
    [31] K. Doverspike and J. I. Pankove, In Gallium Nitride (GaN) I, J. I . Pankove and T. D. Moustakas, eds., New York: Academic Press, pp. 259-269 (1998).
    [32] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).
    [33] S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys. 30, L1708 (1991).
    [34] C. Wang and R. F. Davis, Appl. Phys. Lett. 63, 990 (1993).
    [35] R. J. Molnar, R. Singh and T. D. Moustakas, Appl. Phys. Lett. 66, 268 (1995).
    [36] Z. Yang, L. K. Li and W. I. Wang, Appl. Phys. Lett. 67, 1686 (1995).
    [37] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, Jpn. J. Appl. Phys. 31, L139 (1992).
    [38] J. M. Myoung, C. Kim, K. H. Shim, O. Gluschenkov, K. Kim and M. C. Yoo, Mater. Res. Soc. Symp. Proc. 423, 385 (1996).
    [39] S. Nakamura, N. Iwasa, M. Senoh and T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992).
    [40] S. Strite and H. Morkoc, J. Vac. Sci. Tech., B10, 1237 (1992).
    [41] J. I. Pankove and J. A. Hutchby, J. Appl. Phys. 47(12), 5387 (1976).

    CHAPTER 3

    [1] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys. 74, L797 (1995).
    [2] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE J. Sel. Top. Quan. Electron. 8, 744 (2002).
    [3] N. Maeda, T. Nishida, N. Kobayashi and M. Tomizawa, Appl. Phys. Lett. 73, 1856 (1998).
    [4] C. H. Kuo, S. J. Chang, Y K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, IEEE Electron. Dev. Lett. 23, 240 (2002).
    [5] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett. 13, 559 (2001).
    [6] Y. Z. Chiou, S. J. Chang, Y. K. Su, C. K. Wang, T. K. Lin and B. R. Huang, IEEE Tran. Electron. Dev. 50, 1748 (2003).
    [7] Y. K. Su, S. C. Wei, R. L. Wang, S. J. Chang, C. H. Ko and T. M. Kuan, IEEE Electron. Dev. Lett. 24, 622 (2003).
    [8] S. J. Chang, S. C. Wei, Y. K. Su, T. Y. Tsai, T. H. Hsu, S. C. Chen and C. H. Liu, Jpn. J. Appl. Phys. 42, 3316 (2003).
    [9] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, IEEE J. Sel. Top. Quan. Electron. 8, 278 (2002).
    [10] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. M. Tsai, IEEE Electron. Dev. Lett. 24, 212 (2003).
    [11] O. Briot, J. P. Alexis, M. Tchounkeu and R. L. Aulombard, Materials Science and Engineering B43, 147 (1997).
    [12] L. T. Romano, B. S. Krusor, R. Singh and T. D. Moustakas, J. Electron. Mater. 26, 285 (1997).
    [13] P. Hacke, G. Feuillet, H. Okumura and S. Yoshida, Appl. Phys. Lett. 69, 2507 (1996).
    [14] R. M. Feenstra, J. E. Northrup and Jorg Neugebauer, MRS Internet J. Nitride Semicond. Res. 7, 3 (2002).

    CHAPTER 4

    [1] K. Ploog, In Crystal Growth, Properties and Applications. H. C. Freyhard, ed., Berlin: Springer-Verlag, Vol. 3, p. 73 (1980).
    [2] A. Y. Cho, Thin Solid Films, 10, 291 (1983).
    [3] A. C. Gossard, In Treatise on Material Science and Technology, Preparation and Properties of Thin Films. K. N. Tu and R. Rosenberg, eds., New York: Academic Press, 24, p. 13 (1982).
    [4] L. L. Chang and K. Ploog, Molecular Beam Epitaxy and Heterostructures, Boston: Martinus Nijhoff Publisher. (1985)
    [5] E. H. C. Parker, ed. The Technology and Physics of Molecular Beam Epitaxy. New York: Plenum Publishing Corp. (1986).
    [6] G. J. Davies and D. Williams, In The Technology and Physics of Molecular Beam Epitaxy, E. H. C. Parker, ed., Boston: Plenum Publishing Corp., 2, 15 (1986).
    [7] C. T. Foxon and J. J. Harris, eds. Molecular Beam Epitaxy. Amsterdam: North Holland (1987).
    [8] C. T. Foxon and B. A. Joyce, Growth and Characterization of Semiconductors. R. A. Stradling and P. C. Klipstein, eds., New York: Adam Hilger, p. 35 (1990).
    [9] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys. 74, L797 (1995).
    [10] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE J. Sel. Top. Quan. Electron. 8, 744 (2002).
    [11] N. Maeda, T. Nishida, N. Kobayashi and M. Tomizawa, Appl. Phys. Lett. 73, 1856 (1998).
    [12] C. H. Kuo, S. J. Chang, Y K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, IEEE Electron. Dev. Lett. 23, 240 (2002).
    [13] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett. 13, 559 (2001).
    [14] Y. Z. Chiou, S. J. Chang, Y. K. Su, C. K. Wang, T. K. Lin and B. R. Huang, IEEE Tran. Electron. Dev. 50, 1748 (2003).
    [15] Y. K. Su, S. C. Wei, R. L. Wang, S. J. Chang, C. H. Ko and T. M. Kuan, IEEE Electron. Dev. Lett. 24, 622 (2003).
    [16] S. J. Chang, S. C. Wei, Y. K. Su, T. Y. Tsai, T. H. Hsu, S. C. Chen and C. H. Liu, Jpn. J. Appl. Phys. 42, 3316 (2003).
    [17] H. Lu, W. J. Schaff, J. Hwang, H. Wu, W. Yeo, A. Pharkya, and L. F. Eastman, Appl. Phys. Lett. 77, 2548 (2000).
    [18] Y. Nanishi, Y. Saito, and T. Yamaguchi, Jpn. J. Appl. Phys. 42, 2549 (2003).
    [19] Y. Horikoshi, Jpn. J. Appl. Phys. 27. 169 (1988).

    CHAPTER 5

    [1] J. I. Pankove and J. A. Hutchby: J. Appl. Phys. 47, 5387 (1976).
    [2] T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki and M. Koike: Appl. Phys. Lett. 65, 593 (1994).
    [3] H. Obloh, K. H. Bachem, U. Kaufmann, M. Kunzer, M. Maier, A. Ramakrishnan and P. Schlotter: J. Cryst. Growth 195, 270 (1998).
    [4] L. Eckey, U. Von. Gfug, J. Holst, A. Hoffmann, B. Schineller, K. Heime, M. Heuken, O. Schon and R. Beccard: J. Cryst. Growth 189/190, 523 (1998).
    [5] F. J. Sanchez, F. Calle, M. A. Sanchez-Garcia, E. Calleja, E. Munoz, C. H. Molloy, D. J. Somerford, J. J. Serrano and J. M. Blanco: Semicond. Sci. Technol. 13, 1130 (1998).
    [6] F. Bernardini and V. Fiorentini: Appl. Phys. Lett. 70, 2990 (1997).
    [7] D. J. Dewsnip, A. V. Andrianv, I. Harrison, J. W. Orton, D. E. Lacklison, G. B. Ren, S. E. Hooper, T. S. Cheng and C. T. Foxon: Semicond. Sci. Technol. 13, 1998 (1998).
    [8] F. J. Sanchez, F. Calle, M. A. Sanchez-Garcia, E. Calleja, E. Munoz, C. H. Molloy, D. J. Somerford, J. J. Serrano and J. M. Blanco: MRS Internet J. Nitride Semicond. Res. 3, 19 (1998).
    [9] H. Alves, M. Bohm, A. Hofstaetter, H. Amano, S. Enfeldt, D. Hommel, D. M. Hofmann and B. K. Meyer: Physica B 308, 38 (2001).
    [10] U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. H. Manz, A. Ramakrishnan and B. Santic: Phys. Rev B 59, 5561 (1999).
    [11] J. L. Weyher, S. Muller, I. Grzegory and S. Porowski: J. Cryst. Growth 182, 17 (1997).
    [12] S. Mikroulis, A. Georgakilas, A. Kostopoulos, V. Cimalla and E. Dimarkis: Appl. Phys. Lett. 80, 2886 (2002).
    [13] E. Oh, M. Park, S. Kang, H. Cho, B. Kim, M. Yoo, H. Song and T. Kim: J. Cryst. Growth 189/190, 537 (1998).
    [14] E. Haus, I. P. Smorchkova, B. Heying, P. Fini, C. Poblenz, T. Mates, U. K. Mishra and J. S. Speck: J. Cryst. Growth 246, 55 (2002).
    [15] J. W. Orton, C. T. Foxon, T. S. Cheng, S. E. Hooper, S. V. Novikov, B. Y. Ber and Y. A. Kundriavtsev: J. Cryst. Growth 197, 7 (1997).
    [16] A. Ishii, D. Miyake and T. Aisaka: Jpn. J. Appl. Phys. 41, L842 (2002).
    [17] T. Zywietz, J. Neugebauer and M. Scheffler: Appl. Phys. Lett. 73, 487 (1998) .
    [18] S. Sonoda, S. Shimizu, X. Q. Shen, S. Hara and H. Okumura: Jpn. J. Appl. Phys. 39, 202 (2000).

    CHAPTER 6

    [1] Q.Z. Liu, S.S. Lau, Solid-State Electron. 42, 677 (1998).
    [2] C. I. Wu and A. Kahn, J. Appl. Phys. 86, 3209 (1999).
    [3] P. J. Hartlieb, A. Roskowski, R. F. Davis, A. Platow, and R. J. Nemanich, J. Appl. Phys. 91, 732 (2002)
    [4] J. L. Lee, J. K. Kim, J. W. Lee, Y. J. Park, and T. Kim, Solid-State Electron. 43, 435 (1999).
    [5] Z. Liliental-Weber, M. Benemara, W. Swider, J. Washbum, I. Grzegory, S. Porowski, D. J. H. Lambert, C. J. Eiting, and R. D. Dupuis, Appl. Phys. Lett. 75, 4159 (1999).
    [6] P. Vennegues, M. Benaissa, B. Beaumont, E. Feltin, P. D. Mierry, S. Dalmasso, M. Leroux, and P. Gibart, Appl. Phys. Lett. 77, 880 (2000).
    [7] G. Martinez-Criado, A. Cros, A.Cantarero, R. Dimitrov, O. Ambacher, and M. Stutzmann, J. Appl. Phys. 88, 3470 (2000).
    [8] J. Burm, K. Chu, W. Davis, W.J. Schaff, L.F. Eastman, T.J. Eustis, Appl. Phys. Lett. 70, 464 (1997).
    [9] S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, and R. A. Stall, Appl. Phys. Lett. 67, 1435 (1995).
    [10] J.C. Zolper, R.G. Wilson, S.J. Pearton, R.A. Stall, Appl. Phys. Lett. 68, 1945 (1996).
    [11] M. Rubin, N. Newman, J. S. Chan, T. C. Fu, and J. T. Ross, Appl. Phys. Lett., 64, 64 (1994).
    [12] D. G. Kent, M. E. Overberg, and S. J. Pearton, J. Appl. Phys. 90, 3750 (2001).
    [13] Y. J. Sun, L. S. Tan, S. J. Chua, and S. Prakash, MRS Internet J. Nitride Semicond. Res. 5S1, W3.82 (2000).
    [14] S. Strite, Jpn. J. Appl. Phys. 33, L699 (1994).
    [15] P. Boguslawski, E. L. Briggs, and J. Bernholc, Appl. Phys. Lett. 69, 233 (1996).
    [16] A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. A. Ringel, Appl. Phys. Lett. 84, 374 (2004).
    [17] S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, Mater. Sci. Eng. R30, 55 (2000).
    [18] B. Monemar, J. Cryst. Growth 189/190, 1 (1998).
    [19] P. H. Lim, B. Schineller, O. Schön, K. Heime, and M. Heuken, J. Cryst. Growth 205, 1 (1999).
    [20] S. Nakamura, T. Mukai, and M. Senoh, J. Appl. Phys. 76, 8189 (1994).
    [21] A. K. Viswanath, E. Shin, J. I. Lee, S. Yu, and D. Kim, J. Appl. Phys. 83, 2272 (1998).
    [22] C. Wetzel, S. Fischer, J. Kruger, E. E. Haller, R. J. Molnar, T. D. Moustakas, E. N. Mokhov, and P. G. Baranov, Appl. Phys. Lett. 68, 2556 (1996).
    [23] U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter, Appl. Phys. Lett. 72, 1326 (1998).
    [24] P. Bäumeb, J. Gutowski, D. Wiesmann, R. Heitz, A. Hoffmann, E. Kurtz, D. Hommel, and G. Landwehr, Appl. Phys. Lett. 67, 1914 (1995).
    [25] P. J. Dean, J. D. Cuthbert, and R. T. Lynch, Phys. Rev. 179, 754 (1969).
    [26] W. M. Jadwisienczak, and H. J. Lozykowski, Compound semiconductor, IEEE International Symposium on 8-11 Sept. 1997, pp.271-274.
    [27] T. Ogino, and M. Aoki, Jpn. J. Appl. Phys. 18, 1049 (1979).
    [28] H. Y. Huang, C. H. Chuang, C. K. Shu, Y. C. Pan, W. H. Lee, W. K. Chen, W. H. Chen, and M. C. Lee, Appl. Phys. Lett. 80, 3349 (2002).
    [29] L. T. Romano, M. Kneissl, J. E. Northrup, C. G.. Van de Walle, and D. W. Treat, Appl. Phys. Lett. 79, 2734 (2001).
    [30] J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, Appl. Phys. Lett. 74, 2289 (1999).
    [31] G. Landgren, R. Ludeke, Y. Jugnet, J. F. Morar, and F. J. Himpsel, J. Vac. Sci. Technol. B 2, 351 (1984).
    [32] J. Sun, D. J. Seo, W. L. O’Brien, F. J. Himpsel, A. B. Ellis, and T. F. Kuech, J. Appl. Phys. 85, 969 (1999).
    [33] V. M. Bermudez, D. D. Koleske, and A. E. Wickenden, Appl. Surf. Sci. 126, 69 (1998).
    [34] J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8086 (1994).
    [35] W. E. Spicer, Z. L. Weber, N. Newman, T. Kendelewieg, R. Cao, C. McCant, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Sci. Technol. B 6, 1245 (1988).
    [36] S. Fischer, C. Wetzel, E. E. Haller, and B. K. Meyer, Appl. Phys. Lett. 67, 1298 (1995).
    [37] C. Wetzel, S. Fischer, J. Kruger, E. E. Haller, R. J. Molnar, T. D. Moustakas, E. N. Mokhov, and P. G. Baranov, Appl. Phys. Lett. 68, 2556 (1996).
    [38] F. Bernardini, V. Fiorentini, and A. Bosin, Appl. Phys. Lett., 70, 2990 (1997).
    [39] D. J. Dewsnip, A. V. Andrianov, I. Harrison, J. W. Orton, and C. T. Foxton, Semicond. Sci. Technol. 13, 500, (1998).
    [40] C. Ronning, E. P. Carlson, D. B. Thomson, and R. F. Davis, Appl. Phys. Lett. 73, 1622 (1998).
    [41] C. C. Yu, C. F. Chu, J. Y. Tsai, C. F. Lin, and S. C. Wang, J. Appl. Phys. 92, 1881 (2002).
    [42] T. Ogino and M. Aoki, Jpn. J. Appl. Phys. 19, 2395 (1980).

    下載圖示 校內:立即公開
    校外:2005-06-15公開
    QR CODE