簡易檢索 / 詳目顯示

研究生: 張登凱
Chang, Deng-Kai
論文名稱: 利用蘋果果膠生物模板及水熱法備製氧化鋅奈米球紫外光感測器
Preparation of ZnO Nanosphere Ultraviolet Photodetector Using Apple Pectin Bio-template and Hydrothermal Method
指導教授: 張御琦
Chang, Yu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 39
中文關鍵詞: 光感測器生物模板蘋果果膠氧化鋅水熱法
外文關鍵詞: photodetector, bio-template, apple pectin, ZnO, hydrothermal method
相關次數: 點閱:70下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的發展,工業污染日益增加,如何透過使用有機材料來製作兼具性能與環保的元件一直是本實驗室追求的目標。其他文獻中使用絲膠蛋白、柚子皮等有機材料來當作生物模板製作光感測器,其透過生物模板改變材料的表面形貌,改善了原本氧化鋅光感測器所擁有的低響應速率、穩定度低等問題,因此本實驗選擇使用蘋果果膠生物模板作為研究主題。蘋果果膠為天然高分子材料,具有資源豐富且取得容易的特性,除此之外還擁有環境友善、無毒性、可在低溫下操作等優點。
    本研究透過簡單低溫製程,以蘋果果膠作為生物模板,搭配水熱法備製出具有良好效能之氧化鋅奈米球紫外光感測器。該元件對於紫外光有著優異的感測能力,光暗電流比率可以達到72000,響應時間最快可以達到2.076 秒,同時具有可重複性與穩定性。本研究透過SEM 分析觀察發現氧化鋅由原本柱狀結構轉變為球狀結構,增加其表面積比;藉由PL 及XPS 分析證實添加蘋果果膠可以降低元件的氧缺陷,增進光電流的產生;XRD 分析顯示本元件生長方向與純氧化鋅相同,皆延著c 軸優選取向生長。透過蘋果果膠作為生物模板,有效提升氧化鋅在紫外光感測的性能,使其成為有機光電元件的潛力發展材料。

    With the development of science and technology, industrial pollution is increasing day by day how using organic materials to make components with both performance and environmental protection has always been the goal pursued by our laboratory. Previous reports suggested that organic materials such as sericin and grapefruit peel can be used as bio-template to make zinc oxide (ZnO) photodetectors. The bio-template changes the surface morphology of the materials and improves the low response rate and low stability of the original ZnO photodetectors. Therefore, in this experiment we choose to use apple pectin bio-template as the research topic. Apple pectin is a natural polymer material, which has good supporting properties and is easy to obtain. In addition, it has the advantages of being environmentally friendly, non-toxic, and can operate at low temperature.
    In this study, a ZnO nanosphere UV sensor was prepared using apple pectin as biotemplate by hydrothermal method. The device has excellent sensing ability for ultraviolet light. The light-dark current ratio can reach 72000, the fastest response time can reach 2.076s, and it has repeatability and stability at the same time. The scanning electron microscopy (SEM) analysis revealed that zinc oxide changes from the original rod structure to the spherical structure and increase its surface area. Photoluminescence (PL) and X-ray III photoelectron spectroscopy (XPS) analysis confirmed that the addition of apple pectin can reduce the oxygen defect of the device and improve the generation of photocurrent. XRD analysis shows that the growth direction of this element is the same as that of pure zinc oxide, and both are preferably grown along the c-axis. Using apple pectin as a bio-template can effectively improve the performance of zinc oxide in ultraviolet light sensing and make it a potential material, for the development of organic optoelectronic components.

    摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅳ Contents Ⅴ Figure Captions Ⅷ Table Captions Ⅹ Chapter 1 Introduction 1 1.1 Photodetector 1 1.1.1 Photodiode 1 1.1.2 Photoresistor 2 1.2 ZnO Photodetector 3 1.3 Paper Review 4 1.4 Bio-template 4 1.5 Motivation 5 1.6 Dissertation Organization 5 Chapter 2 Experiment Details 7 2.1 Solution Preparation 7 2.2 Experimental Procedure 7 2.2.1 Substrate Cleaning 7 2.2.2 Hydrothermal Method 8 2.2.3 Annealing 8 2.2.4 Deposition of Electrode 8 2.3 Experimental Equipment 9 2.3.1 Magnetic Stirrer 9 2.3.2 Magnetron Sputter 10 2.4 Analysis Method 11 2.4.1 X-ray Diffraction (XRD) 11 2.4.2 Scanning Electron Microscope (SEM) 12 2.4.3 X-ray Photoelectron Spectroscopy (XPS) 13 2.4.4 Photoluminescence (PL) 14 2.4.5 Keithley Instruments 2636B 15 Chapter 3 Results and Discussion 16 3.1 Change Growth Time 16 3.1.1 SEM Morphology Image 16 3.1.2 Phase Identification of Nanostructure 17 3.1.3 Bandgap and Defect Inspection 18 3.1.4 Chemical Composition Analysis 18 3.1.5 I-V Characteristics 21 3.2 Change Apple Pectin Concentration 23 3.2.1 SEM Morphology Image 23 3.2.2 Phase Identification of Nanostructure 24 3.2.3 Bandgap and Defect Inspection 24 3.2.4 Chemical Composition Analysis 25 3.2.5 I-V Characteristics 27 3.2.6 I-T Characteristics 28 3.3 Comparison 30 3.4 Conduction Mechanism 31 Chapter 4 Conclusions and Future Prospects 33 4.1 Conclusions 33 4.2 Future Prospects 33 References 35

    [1] Amaro-Ortiz, A., Yan, B., & D'Orazio, J. A. (2014). Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules, 19(5), 6202-6219.
    [2] Armstrong, B. K., & Kricker, A. (2001). The epidemiology of UV induced skin cancer. Journal of photochemistry and photobiology B: Biology, 63(1-3), 8-18.
    [3] Soehnge, H., Ouhtit, A., & Ananthaswamy, H. N. (1997). Mechanisms of induction of skin cancer by UV radiation. Frontiers in Bioscience-Landmark, 2(4), 538-551.
    [4] Arya, S., & Chung, Y. H. (2020). Novel indoor ultraviolet wireless communication: design implementation, channel modeling, and challenges. IEEE Systems Journal, 15(2), 2349-2360.
    [5] Song, K., Mohseni, M., & Taghipour, F. (2016). Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water research, 94, 341-349.
    [6] Saha, H. N., Auddy, S., Chatterjee, A., Pal, S., Pandey, S., Singh, R., ... & Maity, A. (2017, August). Pollution control using internet of things (IoT). In 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON) (pp. 65-68). IEEE.
    [7] Liu, Y., Pang, L. X., Liang, J., Cheng, M. K., Liang, J. J., Chen, J. S., ... & Sou, I. K. (2017). A compact solid-state UV flame sensing system based on wide-gap ii–vi thin film materials. IEEE transactions on industrial electronics, 65(3), 2737-2744.
    [8] Neele, F. P., & Schleijpen, R. M. (2003, September). Electro-optical missile plume detection. In Targets and Backgrounds IX: Characterization and Representation (Vol. 5075, pp. 270-280). SPIE.
    [9] Niaz, M., Klassen, S., McMillan, B., & Metz, D. (2010). Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94(5), 903-931.
    [10] Mollow, E., & Breckenridge, R. G. (1954). Proceedings of the photoconductivity conference. Breckenridge, RG, Ed, 509.
    [11] Yadav, A., Agrawal, J., & Singh, V. (2021). Development of Visible-Blind UV Photodetector Using Solution Processed Ag-ZnO Nanostructures. IEEE Photonics Technology Letters, 33(19), 1065-1068.
    [12] Chu, Y. L., Young, S. J., Ji, L. W., Tang, I., & Chu, T. T. (2020). Fabrication of ultraviolet photodetectors based on Fe-doped ZnO nanorod structures. Sensors, 20(14), 3861.
    [13] Bai, S., Wu, W., Qin, Y., Cui, N., Bayerl, D. J., & Wang, X. (2011). High‐performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Advanced Functional Materials, 21(23), 4464-4469.
    [14] Kartopu, G., Turkay, D., Ozcan, C., Hadibrata, W., Aurang, P., Yerci, S. E. L. Ç. U. K., ... & Irvine, S. J. C. (2018). Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays. Solar Energy Materials and Solar Cells, 176, 100-108.
    [15] Manzhi, P., Kumari, R., Alam, M. B., Umapathy, G. R., Krishna, R., Ojha, S., ... & Sinha, O. P. (2019). Mg-doped ZnO nanostructures for efficient organic light emitting diode. Vacuum, 166, 370-376.
    [16] Luo, J., Wang, Y., & Zhang, Q. (2018). Progress in perovskite solar cells based on ZnO nanostructures. Solar Energy, 163, 289-306.
    [17] Bhati, V. S., Hojamberdiev, M., & Kumar, M. (2020). Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Reports, 6, 46-62.
    [18] Kumar, S., Sahare, P. D., & Kumar, S. (2018). Optimization of the CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties. Materials Research Bulletin, 105, 237-245.
    [19] Chu, L., Xu, C., Zeng, W., Nie, C., & Hu, Y. (2022). Fabrication and Application of Different Nanostructured ZnO in Ultraviolet Photodetectors: A Review. IEEE Sensors Journal.
    [20] Noh, Y., Shin, J., Lee, H., Kim, G. Y., Kumar, M., & Lee, D. (2021). Decoration of Ag Nanoparticle on ZnO Nanowire by Intense Pulsed Light and Enhanced UV Photodetector. Chemosensors, 9(11), 321.
    [21] Saravanan, A., Huang, B. R., & Kathiravan, D. (2019). Enhancement of UV Photodetection Properties of Hierarchical Core–Shell Heterostructures of a Natural Sericin Biopolymer with the Addition of ZnO Fabricated on Ultra-Nanocrystalline Diamond Layers. ACS applied materials & interfaces, 12(2), 3254-3264.
    [22] Abbasi, F., Zahedi, F., & hasan Yousefi, M. (2021). Fabricating and investigating high photoresponse UV photodetector based on Ni-doped ZnO nanostructures. Optics Communications, 482, 126565.
    [23] Zhao, R., Wang, Z., Yang, Y., Xing, X., Zou, T., Wang, Z., ... & Wang, Y. (2018). Pd-functionalized SnO2 nanofibers prepared by shaddock peels as bio-templates for high gas sensing performance toward butane. Nanomaterials, 9(1), 13.
    [24] Saravanan, A., Huang, B. R., & Kathiravan, D. (2018). Bio‐industrial Waste Silk Fibroin Protein and Carbon Nanotube‐Induced Carbonized Growth of One‐Dimensional ZnO‐based Bio‐nanosheets and their Enhanced Optoelectronic Properties. Chemistry–A European Journal, 24(48), 12574-12583.
    [25] Li, Y., Lv, T., Zhao, F. X., Zou, Y. L., Lian, X. X., Zhou, Q. J., ... & An, D. M. (2016). Enhanced ethanol sensing and antibacterial activity of ZnO nanosheets synthesised using egg white as template. Materials Technology, 31(4), 192-196.
    [26] Li, W., He, L., Bai, X., Liu, L., Ikram, M., Lv, H., ... & Shi, K. (2020). Enhanced NO 2 sensing performance of S-doped biomorphic SnO 2 with increased active sites and charge transfer at room temperature. Inorganic Chemistry Frontiers, 7(10), 2031-2042.
    [27] Kathiravan, D., Huang, B. R., & Saravanan, A. (2017). Multifunctional sustainable materials: the role of carbon existing protein in the enhanced gas and UV sensing performances of ZnO-based biofilms. Journal of Materials Chemistry C, 5(21), 5239-5247.
    [28] Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods (pp. 81-124). Woodhead publishing.
    [29] Walock, M. J. (2012). Nanocomposite coatings based on quaternary metal-nitrogen and nanocarbon systems. The University of Alabama at Birmingham.
    [30] L'H, Y., & Mireles, L. K. (2017). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF SIMS). In Characterization of polymeric biomaterials (pp. 83-97). Woodhead Publishing.
    [31] Gfroerer, T. H. (2000). Photoluminescence in analysis of surfaces and interfaces. Encyclopedia of analytical chemistry, 67, 3810.
    [32] Dakhlaoui, A., Jendoubi, M., Smiri, L. S., Kanaev, A., & Jouini, N. (2009). Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology. Journal of Crystal Growth, 311(16), 3989-3996.
    [33] Chu, Y. L., Liu, Y. H., Chu, T. T., & Young, S. J. (2022). Improved UV-Sensing of Au-Decorated ZnO Nanostructure MSM Photodetectors. IEEE Sensors Journal, 22(6), 5644-5650.
    [34] Zhang, Q., Xie, G., Xu, M., Su, Y., Tai, H., Du, H., & Jiang, Y. (2018). Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sensors and Actuators B: Chemical, 259, 269-281.
    [35] Russo, P., Xiao, M., Liang, R., & Zhou, N. Y. (2018). UV‐Induced Multilevel Current Amplification Memory Effect in Zinc Oxide Rods Resistive Switching Devices. Advanced Functional Materials, 28(13), 1706230.
    [36] Saravanan, A., Huang, B. R., Lin, J. C., Keiser, G., & Lin, I. N. (2015). Fast photoresponse and long lifetime UV photodetectors and field emitters based on ZnO/ultrananocrystalline diamond films. Chemistry–A European Journal, 21(45), 16017-16026.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE