簡易檢索 / 詳目顯示

研究生: 呂俊昇
Lu, Jun-Sheng
論文名稱: 製備氧化亞銅/還原態氧化石墨烯(Cu2O/rGO)於二氧化碳光催化還原之應用
Preparation of Cu2O/rGO for photocatalytic reduction of CO2
指導教授: 劉守恒
Liu, Shou-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 79
中文關鍵詞: 二氧化碳光觸媒氧化亞銅石墨稀形貌晶相
外文關鍵詞: Carbon dioxide, Photocatalyst, Copper oxide, Graphene, Morphology, Facet.
相關次數: 點閱:116下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著人為活動增加排放大量溫室氣體,溫室效應加劇,導致全球各地氣候異常、海水酸化等問題,其中二氧化碳是影響最為嚴重的溫室氣體。因此,在2015年聯合國氣候變化大會,各國都同意減少二氧化碳的排放。目前最主要的二氧化碳處理技術是二氧化碳捕獲與封存,但是二氧化碳捕獲與封存有一個最大的問題就是全球的封存量有限,所以將二氧化碳轉化成碳氫燃料是目前最有潛力的技術,然而二氧化碳轉的過程需要提供額外的能源,若能運用太陽光作為能量的來源是一最佳的方法,因此,利用光觸媒催化還原二氧化碳是現在最有吸引力的潛在技術。

      氧化亞銅(Cu2O)是一種P型半導體,其能隙值小、製造成本低、無毒且環境友善,適合被選用來當光催化還原二氧化碳。為了降低電子電洞對再結合率和提升光催化效率,石墨烯被選用來修飾氧化亞銅,由於良好的物理特性,像是比表面積大、導電性佳與高光穿透率。本研究利用氧化亞銅在可見光下光催化還原二氧化碳,並摻入不同的比例的還原氧化石墨稀,來提升光催化能力。經過20小時的反應,二氧化碳成功轉化成甲醇,其產率9.76、47.91、335.26與12.41 μmole/g-cat個別對應到Cu2O、Cu2O/1%rGO、Cu2O/5%rGO與Cu2O/10%rGO。其中石墨稀摻入量為5%時,擁有最好的光催化效果。

      光觸媒的晶相對光催化效果的影響在本篇研究亦有探討,在經過20小時候,(100)、(111)與(110)晶相的氧化亞銅的甲醇產率分別為 4.35、26.81、355.26 μmole/g-cat。其中結晶面相為(110)的氧化亞銅有最佳的光催化還原二氧化碳效果。此外本研究還探討不同亞化態的銅觸媒是否會影響光催化效果。

    In the past decades, the global warming, which causes the serous global climate change problem and ocean acidification, tends to be more and more severe with increasing of greenhouse gases such as methane, nitrous oxide, and especially carbon dioxide. A global agreement to reduce greenhouse gases has been reached on the COP21 in Paris in December, 2015. Hence, reduction of CO2 emission is a big and global issue. In order to reduce CO2 emission, there are two main technologies developed; one is carbon capture and storage and the other is CO2 conversion. There is a problem for carbon capture and storage, i.e., very limited sites for CO2 storage in the world. CO2 conversion has a potential to reduce CO2 to hydrocarbon. However, the extra energy is required for reduction of CO2 because of a positive ΔG value. Therefore, CO2 conversion by using photocatalytic reactions via solar energy, is one of potential and eco-friendly attractive technology.
    Cuprous oxide (Cu2O), a p-type semiconductor with a narrow band gap (2.0-2.2 eV), is low cost, nontoxicity, and environmental friendliness. It is suitable to be used as photocatalysts in the photoreduction of CO2, but the rate of electron-hole pairs recombination is high due to the narrow band gap. Therefore, the incorporation of graphene onto Cu2O may reduce the rate of electron-hole recombination and enhance the performance of photocatalysts. In this study, Cu2O was chosen to photocatalytic reduction of CO2 under visible light (λ>420). Different amounts of reduced graphene oxide (rGO) were decorated onto Cu2O to enhance the photocatalytic activity. After visible irradiation for 20 hours, CO2 can be converted into methanol by Cu2O and Cu2O/x%rGO (x = 1, 5, 10). The yields of methanol are 9.76, 47.91, 335.26, and 12.41 μmole/g-cat observed for Cu2O, Cu2O/1%rGO, Cu2O/5%rGO, and Cu2O/10%rGO composites, respectively. Among all the prepared samples, Cu2O/5%rGO has the superior activity of CO2 photoreduction because the proper amounts of incorporated rGO could decrease electron-hole recombination and avoid block of light to reach surface of Cu2O nanocrystals.
    The effect of facets on photocatalytic activity of photocatalysts were also studied. The yields of methanol are 4.35, 26.81, and 355.26 μmole/g-cat after 20 hours under visible irradiation, which corresponding to cubic Cu2O/5%rGO nanocrystals with (100) facets, octahedral Cu2O/5%rGO nanocrystals with (111) facets, and rhombic dodecahedra Cu2O/5%rGO nanocrystals with (110) facets, respectively. The rhombic dodecahedra Cu2O/5%rGO shows surpassing photocatalytic performance due to the positive charged (110) surface of particles. Moreover, different oxidation states of copper decorated with rGO were discussed in this study.

    摘要 I Abstract II Content III LIst of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Objective 2 Chapter 2 Literatures review 3 2.1 Carbon dioxide 3 2.1.1 Carbon capture and storage 7 2.1.2 CO2 conversion 9 2.2 Photocatalysis 11 2.2.1 Photocatalyst 11 2.2.2 Photocatalytic reduction of CO2 17 2.3 Copper 20 2.4 Graphene 23 2.4.1 Physical and chemical properties 24 2.4.2 Synthesis of graphene 25 Chapter 3 Experiment method 27 3.1 Photocatalyst preparation 27 3.1.1 Chemical 27 3.1.2 Synthesis of Graphene Oxide (GO) 28 3.1.3 Synthesis of Cu2O/rGO nanocomposites 30 3.2 Characterization and Analysis 34 3.2.1 Scanning Electron Microscope 34 3.2.2 Transmission Electron Microscope 34 3.2.3 X-ray Diffraction 34 3.2.4 X-ray Photoelectron Spectroscopy 35 3.2.5 Photo-Luminescence 35 3.2.6 Diffuse Reflectance Ultraviolet/Visible spectra 35 3.2.7 Fourier Transform Infrared Spectroscopy 35 3.2.8 Gas Chromatography - Barrier Discharge Ionization Detector 35 3.2.9 Gas Chromatography – Thermal Conductivity Detector 36 3.3 Experimental procedure 38 Chapter 4 39 4.1 Photocatalytic reduction of CO2 by Cu2O/rGO 39 4.1.1 XRD 39 4.1.2 TEM 42 4.1.3 SEM 44 4.1.4 UV-Vis 46 4.1.5 PL 48 4.1.6 XPS 49 4.1.7 Photocatalytic reduction 53 4.2 Photocatalytic reduction of CO2 by Cu2O/rGO with different facets 55 4.2.1 XRD 55 4.2.2 TEM 57 4.2.3 SEM 59 4.2.4 UV 61 4.2.5 PL 63 4.2.6 Photocatalytic reduction 64 4.3 Photocatalytic reduction of CO2 by Cu/rGO, Cu2O/rGO, and CuO/rGO 67 4.3.1 XRD 67 4.3.2 TEM 68 4.3.3 SEM 70 4.3.4 UV 72 4.3.5 Photocatalytic reduction 74 Chapter 5 Conclusions 76 Refferences 77

    Ã, J. G., &Chalmers, H. (2015). Carbon capture and storage, 36(January 2007), 4317–4322.
    An, X., Li, K., &Tang, J. (2014). Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem, 7(4), 1086–1093.
    Article, P. (n.d.). The rise of graphene, 183–191.
    Benson, B. S. M., &Surles, T. (2006). and Storage : An Overview With Emphasis on Capture and Storage in Deep Geological Formations, 94(10).
    Bessekhouad, Y., Robert, D., &Weber, J. (2005). Photocatalytic activity of Cu2O / TiO2 , Bi2O3 / TiO2 and ZnMn2O4 / TiO2 heterojunctions, 101, 315–321.
    Bradford, M. C. J., &Vannice, M. A. (2017). CO2 Reforming of CH4, 4940(April).
    Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C., &Duyne, R. P.Van. (2007). Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography.
    Chiang, L., &Doong, R. (2015). Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO2 with low Cu addition, 156, 1003–1010.
    Clausse, M., Meunier, F., &Ge, L.De. (2008). Experimental Investigation on CO2 Post - Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites, (Figure 1), 209–215.
    Din, M. I., &Rehan, R. (2017). Synthesis , Characterization , and Applications of Copper Nanoparticles. Analytical Letters, 50(1), 50–62.
    Editors, G., Nocera, D., &Guldi, D. (2009). 2009 Renewable Energy issue energy research.
    Environ, E. (2012). Environmental Science Recent advances in hybrid photocatalysts for solar fuel production, 5902–5918.
    Fujishima, A., &Honda, K. (1972). Electronchemical Photolysis of Water at a Semicinductor Electrode.
    Gilje, S., Kaner, R. B., Wallace, G. G., Li, D. A. N., &Mu, M. B. (2008). Processable aqueous dispersions of graphene nanosheets, 101–105.
    Goldberg, P., Chen, Z., Connor, W. O., Walters, R., &Ziock, H. (n.d.). CO2 Mineral Sequestration Studies in US, 1–10.
    Gong, X., &Selloni, A. (2005). Reactivity of Anatase TiO2 Nanoparticles : The Role of the Minority ( 001 ) Surface, (1), 19560–19562.
    Habisreutinger, S. N., Schmidt-mende, L., &Stolarczyk, J. K. (2013). Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors Angewandte, 7372–7408.
    Han, Y., Jeong, Y., Park, H., Young, W., Hye, Y., Hee, S., &Sung, J. (2017). Applied Catalysis B : Environmental Carbon dioxide Fischer-Tropsch synthesis : A new path to carbon-neutral fuels. “Applied Catalysis B, Environmental,” 202, 605–610.
    Ho, M. T., Allinson, G. W., &Wiley, D. E. (2008). Reducing the Cost of CO2 Capture from Flue Gases Using Membrane Technology, 1562–1568.
    Hsu, H. C., Shown, I., Wei, H. Y., Chang, Y. C., Du, H.-Y., Lin, Y.-G., &Chen, K. H. (2012). Graphene Oxide as a Promising Photocatalyst for CO2 to Methanol Conversion. Nanoscale, 262–268.
    Huang, W., Lyu, L., Yang, Y., &Huang, M. H. (2012). Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity, 1261–1267.
    Inoue, T., Fujishima, A., Konishi, S., &Honda, K. . Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders.
    Kiesgen, R., Richter, D., Ming, T., &Caillol, S. (2013). Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renewable and Sustainable Energy Reviews, 19, 82–106.
    Kuo, C., &Huang, M. H. (2008). Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures, i, 18355–18360.
    Li, B., Liu, T., Hu, L., &Wang, Y. (2013). Journal of Physics and Chemistry of Solids A facile one-pot synthesis of Cu2O / RGO nanocomposite for removal of organic pollutant. Journal of Physical and Chemistry of Solids, 74(4), 635–640.
    Li, Z., Pi, Y., Xu, D., Li, Y., Peng, W., Zhang, G.,Fan, X. (2017). Applied Catalysis B : Environmental Utilization of MoS 2 and graphene to enhance the photocatalytic activity of Cu2O for oxidative C=C bond formation, 213, 1–8.
    Linsebigler, A. L., Lu, G., &Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, 735–758.
    Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., &Sun, Y. (2009). A short review of catalysis for CO2 conversion, 148, 221–231.
    Nasrollahzadeh, M., Babaei, F., Fakhri, P., &Jaleh, B. (2015). Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC Advances, 5(c), 10782–10789.
    Online, V. A. (2013). Graphene oxide as a promising photocatalyst for CO2 to methanol conversion †, 262–268.
    Powell, C. E., &Qiao, G. G. (2006). Polymeric CO2 / N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, 279, 1–49.
    Rachow, F., &Schmeißer, D. H. D. (2013). Sabatier-based CO2 -methanation by catalytic conversion, 3771–3778.
    Raimond, J. M., Brune, M., Computation, Q., Martini, F.De, &Monroe, C. (2004). Electric Field Effect in Atomically Thin Carbon Films, 306(October), 666–670.
    Ren, G., Hu, D., Cheng, E. W. C., Vargas-reus, M. A., Reip, P., &Allaker, R. P. (2009). International Journal of Antimicrobial Agents Characterisation of copper oxide nanoparticles for antimicrobial applications, 33, 587–590.
    Sandeep N. Tripathi, Rao, G. S. S., Mathurb, A. B., &Rakshvir, J. (2017). Polyolefin/graphene nanocomposites: a review, 23615–23632.
    Shen, X., Jiang, L., Ji, Z., Wu, J., Zhou, H., &Zhu, G. (2011). Journal of Colloid and Interface Science Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. Journal of Colloid And Interface Science, 354(2), 493–497.
    Su, Y., Nathan, A., Ma, H., &Wang, H. (2016). Precise control of Cu2O nanostructures and LED-assisted photocatalysis. RSC Adv., 6(81), 78181–78186.
    Sun, L., Wu, X., Meng, M., Zhu, X., &Chu, P. K. (2014). Enhanced Photodegradation of Methyl Orange Synergistically by Microcrystal Facet Cutting and Flexible Electrically-Conducting Channels.
    V, E. S. P. B., Chinchen, G. C., Denny, P. J., Jennings, J. R., Waugh, K. C., &Group, P. (1988). Review Synthesis of Methanol Part 1 . Catalysts and Kinetics, 36, 1–65.
    Venna, S. R., &Carreon, M. A. (2010). Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2 / CH4 Separation, 76–78.
    Wall, T. F. (2007). Combustion processes for carbon capture, 31, 31–47.
    Wang, S., Lu, G. Q. M., &Millar, G. J. (1996). Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts : State of the Art, 624(18), 896–904.
    Wang, X., Yang, J., Shi, L., &Gao, M. (2016). Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property. Nanoscale Research Letters, 11(1), 125.
    WILLIAM S, H. J., &RICHARD E, O. (1957). Preparation of Graphitic Oxide, 208(1937), 1937.
    Wu, J. J., Bahnemann, D., &Emeline, A. (2017). Crumpled Cu2O-g-C3N4 nanosheets for hydrogen evolution catalysis Sambandam Anandan. Colloids and Surfaces A, 527(May), 34–41.
    Yoneyama, H. (1997). Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution.
    Yoo, J., Cho, S. H., &Yang, T. (1995). Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption, 591–598.
    Yuan, G., Hsia, C., Lin, Z., Chiang, C., Chiang, Y., &Huang, M. H. (2016). Highly Facet-Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au-Decorated Cu2O Heterostructures, 12548–12556.
    Zhang, L., Li, N., Jiu, H., Qi, G., &Huang, Y. (2015). ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2. Ceramics International, 41(5), 6256–6262.
    Zhang, Y. I., Zhang, L., &Zhou, C. (2013). Graphene and Related Applications, 2329–2339.
    Zhu, B. Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., &Ruoff, R. S. (2010). Graphene and Graphene Oxide : Synthesis , Properties , and Applications, 3906–3924.
    Zou, W., Zhang, L., Liu, L., Wang, X., Sun, J., &Wu, S. (2016). Applied Catalysis B : Environmental Engineering the Cu2O – reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light, 181, 495–503.

    下載圖示 校內:2019-08-01公開
    校外:2019-08-01公開
    QR CODE