簡易檢索 / 詳目顯示

研究生: 李哲語
Li, Jhe-Yu
論文名稱: 垂直軸風力機葉片性能提升之探討
Improvement on a Blade Performance of a Vertical-Axis Wind Turbine
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 135
中文關鍵詞: 垂直軸風力機表面油流可視化實驗表面壓力分佈實驗
外文關鍵詞: VAWT, oil flow visualization, surface pressure measurement
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對本實驗室所設計之第二代風力發電機所使用之翼型 : LS(1)-0417翼剖面之葉片,進行靜態量測其氣動力特性,透過在葉片上表面設置渦流產生器以及在翼前緣裝至砂紙等等,來改善其在較大攻角範圍下之氣動力性能。
    第二代風力機為無可變俯仰角機構之設計,是由三或六片LS(1)-0417葉片組成,葉片弦長0.15公尺、高度1.2公尺,風力機直徑為1.2公尺,為改善及抑制葉片於高攻角下氣流分離之情形,針對此翼型進行渦流產生器之設計,經由油流實驗初步觀察其效果,並以進行表面壓力分佈量測,並以DMS進行靜態扭力計算。
    而根據結果,在來流速度6.57m/s時,在紊流條件下之計算靜態扭力較均勻流場下表現較好,約可達2~4倍左右。而將VG裝設在某些位置時在來流6.57m/s及9.44m/s時有較原始構型佳之結果。

    For more understanding of the aerodynamic performance of the second generation VAWT, experiments were carried out to measure the surface pressure distribution of the airfoil that used by the VAWT.
    The VAWT is consist of three or six straight blades, each blade is 1.2m in height, 0.15m in chord length and 1.2m in diameter. The vortex generators and sandpapers had been applied on the upper surface and leading edge respectively, of the airfoil for improving its performance.Through the oil flow visualization and surface pressure measurement experiments, we can get and compare the aerodynamic and visualization results. And, the starting torque by calculating aerodynamic results in double-multiple streamtube method is presented.
    According to the results, the starting torque in turbulent condition is 200% to 400% greater than without grid when U=6.57m/s, for in some configurations, Installing VGs can improve the performance under the present conditions of U=6.57m/s and 9.44m/s.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號說明 XV 第一章 序論 1 1-1前言 1 1-2研究動機與目的 2 1-3 文獻回顧 3 第二章 實驗設備 10 2.1風洞設備 10 2.2三維移動機構 10 2.3網格 10 2.4資料擷取系統 10 2.5皮托管及壓力感測器 11 2.6熱線探針及熱線測速儀 12 2.7實驗葉片 13 2.8量測模型架設 13 2.9壓力模型 14 2.10油流模型 14 2.11可視化油料 14 2.12渦流產生器 15 2.13砂紙 15 第三章 實驗架設與步驟 17 3.1實驗方法 17 3.1.1表面油流觀察(Oil flow visualization) 17 3.1.2表面壓力量測 18 3.1.3數值模擬計算驗證 22 3.1.4渦流產生器 (Vortex Generator) 設計 24 3.1.5雙多管流模型(Double-multiple streamtube model) 25 3.1.6紊流積分尺度 28 3.2實驗參數設定及步驟 30 3.2.1表面油流可視化實驗 30 3.2.2表面壓力分佈量測 31 3.2.3數值模擬 33 第四章 結果與討論 35 4.1表面油流可視化實驗 35 4.2靜態壓力分佈量測試驗及模擬結果比較驗證 40 4.3 葉片裝設渦流產生器及砂紙之靜態氣動力量測 41 4.3.1 LS(1)-0417翼型升阻力係數量測 41 4.3.2 機翼原始構型量測 42 4.3.3裝設VG_0.5(VG裝置於模型中心,距前緣0.1c至0.4c) 43 4.3.4裝設VG_0.8(VG裝置於模型中心,距前緣0.1c至0.4c) 44 4.3.5裝設砂紙(砂紙貼置於葉片前緣處) 45 4.3.6紊流場量測 47 4.3.7 整體結果 49 4.4雙多管流模型(Double-Multiple Streamtube)計算靜態扭力 50 4.4.1機翼原始構型計算結果 51 4.4.2實驗來流為6.57m/s 52 4.4.3實驗來流為9.44m/s 53 4.4.4紊流場條件 55 4.4.5 與NACA0015翼型比較 56 4.4.6 整體比較 59 4.4.7 DMS計算尖端速度比之分佈 61 第五章 結論與建議 65 5.1結論 65 5.2未來建議 68 參考文獻 69

    [1] 經濟部能源局, 2012年能源產業技術白皮書, 2012.
    [2]GWEC, “Annual Market Update 2012 ”, Global Wind Report2012, pp.9,2012.
    [3] Islam, I., Ting, D.S.K. and Fartaj A., “Design of A Special-Purpose Airfoil For Smaller-Capacity Straight-Bladed VAWT”, Wind Engineering Vol. 31, NO. 6, 2007, pp. 401–424.
    [4] Shikha, T.S. Bhatti and Kothari, D.P., “Early Development of Modern Vertical and Horizontal Axis Wind Turbines:A review”, Wind Engineering, Vol. 29, No. 3,2005, pp. 287-299.
    [5] Manwell, J.F., McGowan, J.G. and Rogers, A.L., “Wind Energy Explained 1st ed”, Wiley,2002, pp.10-20.
    [6] Savonius, S.J., “The S-Rotor and Its Applications”, Mechanical Engineering, Vol. 53, No. 5, pp. 333-338, 1931.
    [7] Ushiyama, I., “Experimentally Determining the Optimum Design Configuration”, Proceedings of The International Conference on Solar and Wind Energy, Beijing, 1985.
    [8] Sabzevan, A., “Performance Characteristics of Concentrator Augmented Savonius Wind Rotors”, Wind Engineering, Vol. 1, pp. 198-206, 1977.
    [9] Peace, S., “Another Approach to Wind (cover story)”, Mechanical Engineering, Vol. 126, No. 6, pp. 28-31, 2004.
    [10] Darrieus G.J.M., United States Patent, No. 1835018, 8 Dec, 1931.
    [11] Tabassum, S.A. and Probert, S.D., “Vertical Axis Wind turbine: A Modified Design”, Applied Energy, Vol. 28, No. 1, pp. 59-67, 1987.
    [12] Carlin, P.W., Laxson, A.S.and Muljadi, E.B., “The History and State of The Art of Variable-Speed Wind Turbine Technology”, National Renewable Energy Laboratory, Technical report: NREL/TP-28607, 2001.
    [13] Mays I.D. and Morgan, C.A., “The 500kW VAWT 850 Demonstration Project. In: Proceedings 1989 European Wind Energy Conference”, Glasgow, Scotland, pp. 1049–1053, 1989.
    [14] Van Beek J., “Keeping Antarctica Pollution Free”, Windpower Monthly, Holland,Mar 1990.
    [15 Brothers, C., “Vertical Axis Wind Turbines for Cold Climate Applications”, Renewable Energy Technologies in Cold Climates, Montreal, 1998.
    [16] Iida, A., Mizuno, A., Fukudome, K., “Numerical Simulation of Aerodynamic Noise Radiated Form Vertical Axis Wind Turbines”, Proceedings of ICA2004, the 18th international congress on acoustics, Kyoto, Japan, 2004.
    [17] Kirke, B.K. and Lazauskas L., “Limitations of Fixed Pitch Darrieus Hydrokinetic Turbines and The Challenge”, Renewable Energy, Vol. 36, No. 3, 2011.
    [18] 蔡易達, ”垂直軸風力機性能與尾流區特性之實驗研究”, 成功大學碩士論文, 2011.
    [19] Paraschivoiu, I., Trifu, O. and Saeed, F., “H-Darrieus Wind Turbine With Blade Pitch Control”, International Journal of Rot 1ating Machinery, Vol. 2009, Article ID 505343, 2009.
    [20] Islam M., Fartaj A. and Carriveau R., “Analysis of the Design Parameters Related to A Fixed-Pitch Straight-Bladed Vertical Axis Wind Turbine”, Wind Engineering, Vol. 32, No. 5, pp. 491-507, 2008.
    [21] Gad-el-Hak, M. and Bushnell, D.M., “Separation Control: Review”, J Fluids Eng, Vol. 113, pp.5-30, 1991.
    [22] Chang, P.K., ”Control of Flow Separation”, Washington, DC, Hemisphere Publishing Corporation, 1976
    [23] Haines, A.B., “Know Your Flow: The Key to Better Prediction and Successful Innovation”, 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 98-0221, January 12-15, 1998.
    [24] Taylor, H.D., “The Elimination of Diffuser Separation By Vortex Generators”, United Aircraft Corporation Report, No. R-4012-3, June 1947.
    [25] Calarese, W., Crisler, WP. and Gustsfson, GL., “Afterbody Drag Reduction by Vortexgenerators”, AIAA 23rd Aerospace Sciences Meeting, Reno, NV, AIAA Paper 85-0354, January 14-17, 1985.
    [26] Clara, M. V., Martin, O. L. H. and Knud, E. M., “Evaluation of The Performance of Vortex Generators on the DU 91-W2-250 Profile using Stereoscopic PIV”, Department of Mechanical Engineering, Technical University of Denmark, 2008.
    [27] Keiko, F.,Masashi, W., Akiyoshi, I. and Akisato, M., “Separation Control of High Angle of Attack Airfoil for Vertical Axis Wind Turbines,” Graduate School of Engineering and Department of Mechanical Engineering, Kogakuin University, Japan, 2004.
    [28] Heine, B., Mulleners, K. and Gardner, A., “On the Effects of Leading edge Vortex Generators On An OA209 airfoil”, H. Mai Deutsches Zentrum fur Luft und Raumfahrt (DLR), Bunsenstrae 10, 37073 Gottingen.
    [29] John, C. L., “Review of Research on Low-Profile Vortexgenerators to Control Boundary-Layer Separation,” Flow Physics and Control Branch, NASA Langley Research Center, Hampton, VA 23681-2199, USA, Progress in Aerospace Sciences 38, pp. 389–420, 2002.
    [30] Kerho, M., Hutcherson, S., Blackwelder, RF. and Liebeck, RH., “Vortexgenerators Used to Control Laminar Separation Bubbles”, J Aircr, Vol.30, No. 6, pp.315-319, 1993.
    [31] Kuethe, A.M., “Effect of Streamwise Vortices on Wake Properties Associated With Sound Generation”, J Aircr, Vol. 9, No. 10, pp. 715-719, 1972.
    [32] J.C. Lin, , “Control of Turbulent Boundary-Layer Separation Using Micro-vortexgenerators”, 30th AIAA Fluid Dynamics Conference, Norfolk, VA, AIAA Paper 99-3404, June 28–July 1, 1999.
    [33] Jørgensen, F. E.,”How to Measure Turbulence with Hot-wire Anemometers. a practical”, Dantec Dynamics, 2002.
    [34] 張國治, “穿音速機翼空氣動力特性之風洞實驗研究”, 成功大學碩士論文, 1996.
    [35] Maltby, R L.,”Flow Visualization in Wind Tunnels Using Indicators”, AGARDograph 70, Apr 1962.
    [36] Steven D. M.,” Lift, Drag And Moment of A NACA 0015 Airfoil,” Department Of Aerospace Engineering The Ohio State University, 28 May 2008.
    [37] John, J. B. and Russell, M. C., ”Aerodynamics For Engineers,” PEASON Education, 2009, pp.125-126.
    [38] Scott, R., Keith, M. And John M. C., ”Ansys Workench Tutorial-Flow Over an Airfoil”, Penn State University, Jan. 2011.
    [39] Robert J. and William, D., ”Low-Speed Aerodynamic Characteristics of A 17-Percent-Thick Airfoil Section Designed For General Aviation Applications”, NASA TN-7428, Dec, 1973.
    [40] Wilson R.E. and Lissaman, P.B.S., “Applied Aerodynamics of Win Power Machines”, Oregon State University, May, 1974.
    [41] Strickland, J. H., “A Performacnce Prediction Model For The Darrieus Wind Turbines”, International symposium on wind energy systems, Cambridge, UK, September 7-9, pp.C3-39-54, 1976.
    [42] Paraschivoiu, I., “Double-Multiple Streamtube Model For Darrieus Wind Turbines”, Second DOE/NASA wind turbines dynamics workshop, NASA CP-2186, Cleveland, OH, Ferbruary, pp. 19-25, 1981.
    [43] Mazharul, I., David, S.K.and Ting, A. F., "Aerodynamics Models For Darrieus-Type Straight-Bladed Vertical Axis Wind turbines", Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ont., Canada N9B 3P4Received 20 October 2006, accepted 31 October 2006.
    [44] 許家哲, “探討不同縫寬開縫圓柱尾流受紊流強度之影響”, 成功大學碩士論文, 2011.
    [45] 梁士毅, “垂直軸風力機性能與啟動鈕力提升之實驗研究”, 成功大學碩士論文, 2012.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE