| 研究生: |
蔡季霖 Tsai, Chi-Lin |
|---|---|
| 論文名稱: |
利用陽離子交換法將一維硫化鋅奈米結構轉換成硫化亞銅之研究 Study of ZnS Conversion into Cu2-xS in One-Dimensional Nanostructures through Cation Exchange |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 陽離子交換 、硫化亞銅 、超晶格 |
| 外文關鍵詞: | cation exchange, copper sulfide, superlattice |
| 相關次數: | 點閱:132 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗成功利用氣相沉積法合成出一維ZnS奈米結構,其中zinc blende及wurtzite兩相是共存的,接著在不同條件下進行以ZnS當作模板,由CuCl2提供Cu來源,在管型爐中利用陽離子交換法將ZnS轉換成Cu2-xS。利用掃描式電子顯微鏡(SEM)觀察一維奈米結構的表面形貌,X光繞射分析來鑑定相結構,穿透式電子顯微鏡(TEM)探討奈米材料的微結構及成長機制。
在300℃反應時,原本是wurtzite結構的ZnS,經過陽離子交換反應轉換為rhombohedral結構的Cu1.8S,並具有一維超晶格。rhombohedral結構的Cu1.8S是meta-stable相,在短時間(5min)的反應中可觀察到,但是將反應時間拉長(15min)後,會再轉變成cubic結構的Cu1.8S,若反應前就是zinc blende結構ZnS,陽離子交換反應後會直接轉換成為cubic結構的Cu1.8S,且具有三維超晶格,這些超晶格是因為Cu1.8S中的大量Cu空缺規則(ordered)排列所造成,這裡將提出超晶格結構的原子模型,也可以發現經過陽離子交換反應後材料的尺寸、形貌及結構會被保存下來。當反應溫度提高至400℃、500℃,可以得到Cu2S的monoclinic及hexagonal結構。根據文獻Cu1.8S材料具有良好的導電性,加上超晶格結構可以阻擾聲子的移動而降低導熱性,因此是個很有潛力的熱電材料。
This study is focused on solid state phase transformation of ZnS to synthesize one-dimensional Cu2-xS nanostructures by using two-step vapor deposition process. One-dimensional ZnS nanostructures are first synthesized using ZnS powders as the source, followed by the growth of Cu2-xS nanostructures through cation exchange reactions using CuCl2 as the source at different temperature. The X-ray diffraction patterns show the presence of Cu1.8S and Cu2S under different conditions. The microstructure and defects of the Cu2-xS nanostructures are analyzed using transmission electron microscopy. At 300℃,the product is meta-stable rhombohedral Cu1.8S with 1-D superlattices and stacking faults. By prolonging the reaction time, the rhombohedral Cu1.8S would transform to cubic Cu1.8S with 3-D superlattices accompanied by zigzag morphology, pores and twins due to stress release. All the superlattices are caused by the ordered arrangement of copper vacancies. We find that while the reactions are controlled by kinetics at 300℃, they are controlled by thermodynamics at higher temperatures. Owing to good electric conductivity and superlattice-induced poor thermal conductivity, Cu1.8S could be a potential thermoelectric material.
[1] D. Moore & Z. L. Wang. "Growth of anisotropic one-dimensional ZnS nanostructures". J. Mater. Chem. 16, 3898-3905, (2006).
[2] R. Saini et al. "Phonon conduction in superlattices". Superlattices and Microstructures 82, 574-583, (2015).
[3] Y. Ding et al. "Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite". Chemical Physics Letters 398, 32-36, (2004).
[4] Y. Hao et al. "Periodically Twinned Nanowires and Polytypic Nanobelts of ZnS: The Role of Mass Diffusion in Vapor-Liquid-Solid growth". Nano Lett 6, 1650-1655, (2006).
[5] Z. L. Wang et al. "Induced growth of asymmetric nanocantilever arrays on polar surfaces". Phys Rev Lett 91, 185502, (2003).
[6] Y. Wu & P. Yang. "Direct Observation of Vapor-Liquid-Solid Nanowire Growth". J. AM. CHEM. SOC. 123, 3165-3166, (2001).
[7] B. Liu et al. "Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission". Nanotechnology 21, 375601, (2010).
[8] C. Ma. et al. "Nanobelts, Nanocombs, and Nanowindmills of Wurtzite ZnS". Advanced Materials 26, 228-231, (2003).
[9] L. Shi et al. "Shape-Selective Synthesis and Optical Properties of Highly Ordered One-Dimensional ZnS Nanostructures". Crystal Growth & Design 9, 2214-2219, (2009).
[10] J. Wang et al. "Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth". Nano Lett 13, 3996-4000, (2013).
[11] X. Huang et al. "Assembly of Three-Dimensional Hetero-Epitaxial ZnO/ZnS Core/Shell Nanorod and Single Crystalline Hollow ZnS Nanotube Arrays". Acs Nano 6, 7333-7339, (2012).
[12] Y. X. Zhao et al. "Plasmonic Cu2-xS Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides". J. AM. CHEM. SOC. 131, 4253-4261, (2009).
[13] P. Lukashev et al. "Electronic and crystal structure of Cu2−xS: Full-potential electronic structure calculations". Physical Review B 76, 195202, (2007).
[14] P. Roy & S. K. Srivastava. "Nanostructured copper sulfides: synthesis, properties and applications". CrystEngComm 17, 7801-7815, (2015).
[15] F. DI BENEDETTO et al. "First evidence of natural superconductivity". European Journal of Mineralogy 18, 283-287, (2006).
[16] M. Tanveer et al. "Synthesis of CuS flowers exhibiting versatile photo-catalyst response". New J. Chem. 39, 1459-1468, (2015).
[17] H. Lee et al. "In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials". Nano Lett 7, 778-784, (2007).
[18] G. Liu et al. "Interface properties and band alignment of Cu2S/CdS thin film solar cells". Thin Solid Films 431, 477-482, (2003).
[19] A. V. Naumov et al. "Phase Composition of Copper Sulfide Films Produced from Copper Salt–Thiourea Complexes". Inorganic Materials 38, 271-273, (2002).
[20] G. Will et al. "Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 °C under controlled sulfur partial pressure". European Journal of Mineralogy 14, 591-598, (2002).
[21] Y. He et al. "High thermoelectric performance in non-toxic earth-abundant copper sulfide". Advanced Materials 26, 3974-3978, (2014).
[22] Q. Xu et al. "Crystal and electronic structures of CuxS solar cell absorbers". Applied Physics Letters 100, 061906, (2012).
[23] D. J. Chakrabarti & D. E. Laughlin. "The Cu-S system". Bulletin of Alloy Phase Diagrams 4, (1983).
[24] N. W. Buerger. "The chalcocite problem". Economic Geology 36, 19-44, (1941).
[25] Monrlrorol & Kurronuo. "POLYMORPHISM IN DIGENITE". THE AMERICAN MINERALOGIST 48, 110-123, (1963).
[26] Y. Lim et al. "Electrical contact properties of Cu2S nanowires grown vertically on Cu foil by gas–solid reaction". Current Applied Physics 9, 890-893, (2009).
[27] L. Chen et al. "Synthesis of Uniform Cu2S Nanowires from Copper-Thiolate Polymer Precursors by a Solventless Thermolytic Method". J. AM. CHEM. SOC. 126, 16334-16335, (2004).
[28] Y. Z. G Ma, X Li, K Sun, S Liu, J Hu, NA Kotov. "Self-Assembly of Copper Sulfide Nanoparticles into Nanoribbons with Continuous Crystallinity". Acs Nano 7, 9010-9018, (2013).
[29] H. S. Kim et al. "Gas-phase substitution synthesis of Cu1.8S and Cu2S superlattice nanowires from CdS nanowires". CrystEngComm 13, 2091, (2011).
[30] J. B. Rivest & P. K. Jain. "Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing". Chem Soc Rev 42, 89-96, (2013).
[31] D. H. Son et al. "Cation exchange reactions in ionic nanocrystals". SCIENCE 306, 1009-1012, (2004).
[32] Z. Fan et al. "Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands". Nat Commun 7, 11503, (2016).
[33] C. Bothe et al. "Solid-State Chemistry on the Nanoscale: Ion Transport through Interstitial Sites or Vacancies?". Angew Chem Int Ed Engl 54, 14183-14186, (2015).
[34] D. D. Karol Miszta, Alessandro Genovese, Mee Rahn Kim, and Liberato Manna. "Cation Exchange Reactions in Colloidal Branched Nanocrystals". Acs Nano 5, 7176-7183, (2011).
[35] Y. Yu et al. "Nanoporous single-crystal-like Cd(x)Zn(1-x)S nanosheets fabricated by the cation-exchange reaction of inorganic-organic hybrid ZnS-amine with cadmium ions". Angew Chem Int Ed Engl 51, 897-900, (2012).
[36] D. H. Ha et al. "Solid-solid phase transformations induced through cation exchange and strain in 2D heterostructured copper sulfide nanocrystals". Nano Lett 14, 7090-7099, (2014).
[37] 鄭信民 & 林麗娟. "X 光繞射應用簡介". 工業材料雜誌 (181), 100-108, (2002).
[38] 鮑忠興 & 劉思謙. 近代穿透式電子顯微鏡實務. (滄海書局, 2012).
[39] G. Donnay et al. "CRYSTAL AND TWIN STRUCTURE OF DIGENITE, Cu9S5". THE AMERICAN MINERALOGIST 43, 228-242, (1958).
[40] L. Liu et al. "Controllable Transformation from Rhombohedral Cu1.8S Nanocrystals to Hexagonal CuS Clusters: Phase- and Composition-Dependent Plasmonic Properties". Chemistry of Materials 25, 4828-4834, (2013).
[41] T. Zhai et al. "Fabrication, structural characterization and photoluminescence of single-crystal Zn(x)Cd(1-x)S zigzag nanowires". Nanotechnology 17, 4644-4649, (2006).
[42] Z. H. Ge et al. "Synthesis and transport property of Cu(1.8)S as a promising thermoelectric compound". Chem Commun (Camb) 47, 12697-12699, (2011).
[43] H. Liu et al. "Copper ion liquid-like thermoelectrics". Nat Mater 11, 422-425, (2012).
[44] Y. Zhang et al. "Charge-stripe order in the electronic ferroelectric LuFe2O4". Phys Rev Lett 98, 247602, (2007).
[45] D. van Dyck et al. "The diffraction pattern of crystals presenting a digenite type of disorder II. The structure of the digenite-related phases derived by means of the cluster theory". physica status solidi (a) 58, 451-468, (1980).
[46] S. L. Cheng & M. F. Chen. "Fabrication, characterization, and kinetic study of vertical single-crystalline CuO nanowires on Si substrates". Nanoscale Research Letters 7, 119, (2012).
[47] P. Sykes. A guidebook to mechanism in organic chemistry. (Pearson Education India, 1986).
[48] V. A. Gevorkyan et al. "Characterization of Cu2O thin films prepared by evaporation of CuO powder". Journal of Physics: Conference Series 350, 012027, (2012).
[49] L. Schramm et al. "Thermodynamic Reassessment of the Cu-O Phase Diagram". Journal of Phase Equilibria & Diffusion 26, 605-612, (2005).
[50] Y. H. Chen et al. "A solid-state cation exchange reaction to form multiple metal oxide heterostructure nanowires". Nanoscale 8, 17039-17043, (2016).