簡易檢索 / 詳目顯示

研究生: 王威閔
Wang, Wei-Min
論文名稱: NGA-West2 地動預測方程式之偏差和誤差定量分析
Quantity Analysis of Biases and Errors in NGA-West2 GMPE
指導教授: 洪李陵
Hong, Li-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 217
中文關鍵詞: 地動預測方程式偏差標準差標準化殘值加權後殘值
外文關鍵詞: GMPE, Bias, Standard Deviation, Standardized Residual, Weighted Residual
相關次數: 點閱:132下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討NGA-West2 GMPE 的偏差和誤差,採用的指標為加權後殘
    值的平均數和標準化殘值的標準差。首先詳細介紹NGA-West2 GMPE 和其標準差,接著依據I14、BSSA14、CB14 及ASK14 的篩選準則,從NGA-West2 Flatfile擷取各GMPE的測站資料,然後計算並檢視加權後殘值的平均數接近0,以及標準化殘值的標準差接近1 的程度,以分析各GMPE的適用性。最後採用與I14 相同的測站紀錄,針對I14 的函數型式,重新進行非線性迴歸分析,估計一套新的參數,以驗證加權後殘值的平均數和標準化殘值的標準差等兩項評估指標的有效性。本文結論為:(1)由I14、BSSA14、CB14 和ASK14 所得的加權後殘值之平均數通常為負值,在長週期的PSA 甚至是偏低的負值,代表這四條GMPE高估了PSA,將高估地震危害度分析的結果。(2)由I14、BSSA14、CB14和ASK14所得的標準化殘值之標準差絕大部份大於1,代表這四條GMPE低估了標準差,將低估地震危害度分析在高PSA的結果。(3)這四條GMPE 引用了為數不多的台灣測站紀錄,分別以所有測站紀錄和台灣測站紀錄進行殘值分析,結果明顯不同,因此這四條GMPE 在台灣地震危害度分析的適用性值得商榷。(4)這四條GMPE 所得的加權後殘值之局部平均數隨規模起伏的幅度最為明顯,表示這四條GMPE在某些規模的局部偏差比起任何Rrup和
    VS30來得大。(5)這四條GMPE 的標準差隨規模而減少的趨勢並不特別明顯,短週期PSA 的標準差與規模略呈減函數關係,長週期PSA 的標準差則接近常數。(6)週期愈大,這四條GMPE 的標準差有增加的趨勢,但仍非週期的線性遞增函數。(7)新參數GMPE 的加權後殘值平均數非常接近0,標準化殘值的標準差非常接近1,且誤差平方和比原始I14 來得小。

    SUMMARY
    The purpose of this study is to discuss the biases and errors in NGA-West2 GMPEs with indices of the mean of weighted residuals and the standard deviation of standardized residuals. Station records are screened out form the NGA-West2 Flatfile in order for calculating the weighted residuals and standardized residuals. If the mean of weighted residuals approaches to 0 and the standard deviation of standardized residuals approaches
    to 1, then the GMPE is unbiased and its standard deviation is correct, respectively. Finally, new parameters in the same form of I14 are estimated through a nonlinear regression analysis with the identical station records of I14 to verify the effectiveness of these two evaluation indices. The conclusions are as follows: (1) The means of weighted residualsform I14, BSSA14, CB14, and ASK14 are always negative. These 4 GMPEs would overestimate PSA and the results of PSHA. (2) The standard deviations of standardized residuals form I14, BSSA14, CB14, and ASK14 are almost larger than 1. These 4 GMPEs would underestimate their standard deviations and the results of PSHA at high PSA. (3) The local averages of weighted residuals form these 4 GMPEs vary with the magnitude more obviously than with the rupture distance and the shear-wave velocity over the top 30 m. (4) For the GMPE with new parameters, the mean of weighted residuals is very close to 0, the standard deviation of standardized residuals is very close to 1, and the sum of squared residuals is less than that
    from I14.

    INTRODUCTION
    NGA-West2 GMPE project was sponsored by the California Earthquake Authority,the California Department of Transportation, and the Pacific Gas & Electric Company.
    The project was executed by the Pacific Earthquake Engineering Research, the Southern California Earthquake Center, and the United States Geological Survey. In 2013, the fivework teams proposed I14 GMPE, BSSA14 GMPE, CB14 GMPE, ASK14 GMPE, and CY14 GMPE.

    The parameters of GMPE can be estimated by different methods. Most of the NGA-West2 GMPE referred to a mixed-effect model proposed by Abrahamson and Young to analyze between-event residuals and within-event residuals, and processed several times of the nonlinear regression analysis to estimate the related parameters.

    Obviously, the biases and errors of GMPE would affect the results of PSHA.Therefore, it is necessary to verify the unbiasedness of the GMPE and its standard deviation. We proposed two indices to do such verification, i.e., the mean of weighted residuals and the standard deviation of standardized residuals.

    MATERIALS AND METHODS
    In the thesis, we get the station records from the NGA-West2 Flatfile according to different selection criteria proposed by each NGA-West2 GMPE. There were still some
    quantitative differences between our records and the ones given in the NGA-West2 reports. Then we processed the residuals analysis. If the mean of weighted residuals is very close to zero, then the GMPE is unbiased. If the standard deviation of standardized residuals approaches to one, then the standard deviation of GMPE is unbiased. The weighted residual is the difference between the record in natural log unit and the predicted one by
    the GMPE divided by the square of the estimated standard deviation of the GMPE. The standardized residual is the difference between the record in natural log unit and the
    predicted one by the GMPE divided by the estimated standard deviation of the GMPE. We investigated the local variations of residuals and squared residuals over the magnitude, the rupture distance, and the averaged shear-wave velocity. The variation of the standard deviation across the period was also discussed. Finally, we used the same station records and the same form of I14 to perform the nonlinear regression analysis, and then the new parameters are estimated. The results of residual analysis to I14 and the new GMPE were compared.

    RESULTS AND DISCUSSION
    The means of weighted residuals from I14 at long-period PSA are less than zero so that I14 overestimates the PSA at long period. The standard deviation of standardized
    residuals of I14 is more than one so that I14 underestimates the standard deviation of PSA at all periods. The means of weighting residuals from BSSA14 at most long-period PSA are less than zero so that BSSA14 also overestimates the PSA at most long period. The
    standard deviation of standardized residuals from BSSA14 is more than one so that BSSA14 underestimates the standard deviation of PSA at all periods. The means of
    weighted residuals from CB14 are less than zero so that CB14 overestimates the PSA at all periods. The standard deviation of standardized residuals from CB14 is more than one at long-period PSA but less than one at short-period PSA so that CB14 underestimates the standard deviation of PSA at long period but overestimates the
    standard deviation of PSA at shorter period. The means of weighted residuals from ASK14 at most long-period PSA are less than zero so that ASK14 overestimates the PSA at most long period. The standard deviation of standardized residuals from ASK14 is more than one so that ASK14 underestimates the standard deviation of PSA at all periods.

    It was found that at short-period PSA the standard deviation of I14 decreases when the magnitude increases, and so does BSSA14 in the interval of moderate magnitude. There was no obvious trend of the standard deviation of CB14 over the magnitude at short-period PSA and in the interval of moderate magnitude. The standard deviation of ASK14 decreases when the magnitude increases at short-period PSA and in the interval of moderate magnitude.
    For the PSA at short period, the new GMPE and I14 are close, but for the PSA at 10-sec period, the new GMPE is better than I14 in catching the variation of records over
    the rupture distance.

    CONCLUSION
    (1). The means of weighted residuals form I14, BSSA14, CB14, and ASK14 are always negative, especially for the cases of PSAs at long periods. These 4 GMPEs would overestimate PSA and the results of PSHA.
    (2). The standard deviations of standardized residuals form I14, BSSA14, CB14, and ASK14 are almost larger than 1. These 4 GMPEs would underestimate their standard deviations and the results of PSHA at high PSA.
    (3). Taiwan records used by these 4 GMPEs are so minor that the results of residual analysis are quite different. It is suspicious to use such GMPEs in Taiwan
    PSHA.
    (4). The local averages of weighted residuals form these 4 GMPEs vary with the magnitude more obviously than with the rupture distance and the shear-wave velocity over the top 30 m.
    (5). For these 4 GMPEs, the standard deviations of PSAs at short periods decrease a little when the magnitude increases, but the standard deviations of PSAs at long
    periods approach to a constant.
    (6). The standard deviations of these 4 GMPEs increase as the period increases, but their relations are not linear.
    (7). For the GMPE with new parameters at each period, the mean of weighted residuals is very close to 0, the standard deviation of standardized residuals is very close to 1, and the sum of squared residuals is less than that from I14.

    目錄 摘要 ..............................................................................................................................I Extended Abstract ...................................................................................................... II 致謝 ........................................................................................................................... VI 目錄 ......................................................................................................................... VII 表目錄 ........................................................................................................................ X 圖目錄 ..................................................................................................................... XII 符號表 .................................................................................................................... XVI 第一章 緒論 ............................................................................................................. 1 1.1 研究動機與目的 .............................................................................................. 1 1.2 文獻回顧 .......................................................................................................... 1 1.2.1 NGA-West2 GMPE 計畫 ........................................................................... 1 1.2.2 GMPE迴歸分析方法 ................................................................................. 2 1.3 本文研究內容 .................................................................................................. 3 第二章 地動預測方程式介紹 .................................................................................. 4 2.1 GMPE之特性 ................................................................................................... 4 2.2 Pre-NGA GMPE ................................................................................................ 4 2.2.1 Idriss GMPE (2002) .................................................................................... 5 2.2.2 Boore-Joyner-Fumal GMPE (1997) ............................................................ 5 2.2.3 Campbell-Bozorgnia GMPE (2003) ........................................................... 5 2.2.4 Abrahamson-Silva GMPE (1997) ............................................................... 6 2.2.5 Sadigh-et al GMPE (1997) .......................................................................... 6 2.3 NGA-West GMPE ............................................................................................. 6 2.3.1 Idriss GMPE (2007) .................................................................................... 7 2.3.2 Boore-Atkinson GMPE (2007) ................................................................... 7 2.3.3 Campbell-Bozorgnia GMPE (2007) ........................................................... 7 2.3.4 Abrahamson-Silva GMPE (2007) ............................................................... 8 2.3.5 Chiou-Youngs GMPE (2008) ..................................................................... 9 2.3.6 NGA-West GMPE 適用範圍 ................................................................... 10 2.3.7 NGA-West GMPE 之間比較 ................................................................... 10 2.4 NGA-West 2 GMPE ........................................................................................ 10 2.4.1 I14 (2013) .................................................................................................. 11 2.4.2 BSSA14 (2013) ......................................................................................... 11 2.4.3 CB14 (2013) .............................................................................................. 14 2.4.4 ASK14 (2013) ........................................................................................... 18 2.4.5 CY14 (2013).............................................................................................. 24 2.4.6 NGA-West 2 GMPE 適用範圍 ................................................................ 26 2.4.7 NGA-West 2 GMPE 與NGA-West GMPE 之間比較 ............................ 26 2.5 NGA-West 2 GMPE 使用之台灣測站紀錄 ................................................... 26 2.6 NGA-West 2 GMPE 篩選資料方式 ............................................................... 27 2.7 NGA-West2 GMPE 的參數 ............................................................................ 27 第三章 NGA-West2 GMPE 之標準差 ................................................................... 39 3.1 I14 (2013) ........................................................................................................ 39 3.2 BSSA14 (2013) ............................................................................................... 39 3.3 CB14 (2013) .................................................................................................... 41 3.4 ASK14 (2013) ................................................................................................. 42 3.5 CY14 (2013) .................................................................................................... 44 第四章 NGA-West2 GMPE 之適用性探討 ........................................................... 49 4.1 NGA-West2 GMPE 採用的資料庫 ................................................................ 49 4.2採用測站紀錄數量上的差異 ......................................................................... 50 4.3變數不明確的處理方式 ................................................................................. 51 4.4 GMPE參數之估計 ......................................................................................... 51 4.5由殘值分析檢討GMPE適用性 .................................................................... 58 4.6 I14 的適用性檢討 ........................................................................................... 61 4.7 BSSA14的適用性檢討 .................................................................................. 63 4.8 CB14 的適用性檢討 ....................................................................................... 64 4.9 ASK14 的適用性檢討 .................................................................................... 65 4.10 NGA-West2 GMPE 條件標準差與規模之關係 .......................................... 66 第五章 I14 參數之重新迴歸分析探討 ................................................................ 176 5.1 I14 迴歸參數之合理性 ................................................................................. 176 5.2 I14 之重新迴歸分析 ..................................................................................... 177 5.3新參數GMPE增減變化之合理性 .............................................................. 180 5.4新參數GMPE與I14 之比較 ....................................................................... 180 第六章 結論與建議............................................................................................... 210 6.1 結論 .............................................................................................................. 210 6.2 建議 .............................................................................................................. 212 參考文獻 ................................................................................................................. 214

    [1] Abrahamson, N. A. & Silva, W. J. (1997), Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes, Seismological Research Letter, Vol. 68, pp. 105-106
    [2] Abrahamson, N. A. & Silva, W. J. (2007), Abrahamson & Silva NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters, Pacific Earthquake Engineering Research
    Center, PEER, University of California, Berkeley
    [3] Abrahamson, N. A., Silva, W. J. & Kamai, R. (2013), Update of the AS08 Ground-Motion Prediction Equations Based on the NGA-West2 Data Set, Pacific Earthquake Engineering Research Center, PEER 2013/04, University of
    California, Berkeley
    [4] Abrahamson, N. A. & Youngs, R. R. (1992), A stable algorithm for regression analysis using the random effects model, Bulletin of the Seismological Society
    of America, Vol 82, pp.505-510
    [5] Ancheta, T. D., Darragh, R. B., Stewart J. P., Seyhan, E., Silva, W. J., Chiou, B. S. J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M., Kishida, T. & Donahue, J. L. (2013), PEER NGA-West2 Database, Pacific Earthquake Engineering Research Center, PEER 2013/03, University of California, Berkeley
    [6] Boore D. M. (2010), Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion, Bulletin of the
    Seismological Society of America, Vol. 100, pp. 1830-1835
    [7] Boore, D. M. & Atkinson, G. M. (2007), Boore-Atkinson NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters, Pacific Earthquake Engineering Research Center, PEER 2007/01, University of California, Berkeley
    [8] Boore, D. M., Joyner, W. B. & Fumal, T. E. (1997), Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work, Seismological Research Letter, Vol. 68, pp. 141-142
    [9] Boore, D. M., Stewart, J. P., Seyhan, E. & Atkinson, G. M. (2013), NGA-West2 Equations for Predicting Response Spectral Accelerations for Shallow Crustal Earthquakes, Pacific Earthquake Engineering Research Center, PEER 2013/05, University of California, Berkeley
    [10] Brillinger, D. R. & Preisler, H. K. (1984), An exploratory analysis of the Joyner-Boore attenuation data, Bulletin of the Seismological Society of America,
    Vol. 74, pp. 1441-1450
    [11] Brillinger, D. R. & Preisler, H. K. (1985), Further analysis of the Joyner-Boore
    attenuation data, Bulletin of the Seismological Society of America, Vol 75, pp. 611-614
    [12] Campbell, K. W. & Bozorgnia, Y. (2003), Updated Near-Source Ground-Motion (Attenuation) Relations for the Horizontal and Vertical Component of Peak Ground Acceleration and Acceleration Response Spectra,
    Bulletin of the Seismological Society of America, Vol. 93, pp 319-320
    [13] Campbell, K. W. & Bozorgnia, Y. (2007), Campbell-Bozorgnia NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters, Pacific Earthquake Engineering Research Center, PEER 2007/02, University of California, Berkeley
    [14] Campbell, K. W. & Bozorgnia, Y. (2013), NGA-West2 Campbell-Bozorgnia Ground Motion Model for the Horizontal Components of PGA, PGV, and 5%-Damped Elastic Pseudo-Acceleration Response Spectra for Periods Ranging from 0.01 to 10 sec, Pacific Earthquake Engineering Research Center, PEER 2013/06, University of California, Berkeley
    [15] Chiou, B. S. J. & Youngs, R. R. (2008), NGA Model for Average Horizontal Component of Peak Ground Motion and Response Spectra, Pacific Earthquake Engineering Research Center, PEER 2008/09, University of California,
    Berkeley
    [16] Chiou, B. S. J. & Youngs, R. R. (2013), Update of the Chiou and Youngs NGA Ground Motion Model for Average Horizontal Component of Peak Ground Motion and Response Spectra, Pacific Earthquake Engineering Research Center, PEER 2013/07, University of California, Berkeley
    [17] Idriss, I. M. (2002), Attenuation relationship derived by I. M. Idriss in 2002,in Empirical Model for Estimating the Average Horizontal Values of
    Pseudo-Absolute Spectral Accelerations Generated by Crustal Earthquakes, Pacific Earthquake Engineering Research Center, IMI-NGA Interim Report, Vol. 1, University of California, Berkeley
    [18] Idriss, I. M. (2007), Empirical Model for Estimating the Average Horizontal Values of Pseudo-Absolute Spectral Accelerations Generated by Crustal Earthquakes, Pacific Earthquake Engineering Research Center, IMI-NGA Interim Report, Vol. 1, University of California, Berkeley
    [19] Idriss, I. M. (2013), NGA-West2 Model for Estimating Average Horizontal Values of Pseudo-Absolute Spectral Accelerations Generated by CrustalEarthquakes, Pacific Earthquake Engineering Research Center, PEER 2013/08,
    University of California, Berkeley
    [20] Joyner, W. B. & Boore, B. M. (1981), Peak horizontal acceleration and velocity from strong-motionrecords including records from the 1979 Imperial Valley,
    California, earthquake, Bulletin of the Seismological Society of America, Vol.
    71, pp. 2011-2038
    [21] Kamai, R., Abrahamson, N. A. & Silva, W. J. (2013), Nonlinear horizontal site response for the NGA-West2 project, Pacific Earthquake Engineering Research Center, PEER 2013/12, University of California, Berkeley
    [22] Sadigh, K., Chang, C. Y., Egan, J. A., Makdisi, F. & Youngs, R. R. (1997) Attenuation Relationships for Shallow Crustal Earthquakes Based on California
    Strong Motion Data, Seismological Research Letter, Vol. 68, pp. 184
    [23] Spudich, P., Chiou, B. S. J., Bayless, J. R., Baker, J. W., Rowshandel, B., Shahi, S. K. & Somerville, P. (2013), Final Report of the NGA-West2 Directivity Working Group, Pacific Earthquake Engineering Research Center, PEER 2013/09, University of California, Berkeley

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE