| 研究生: |
馮玠寧 Feng, Chieh-Ning |
|---|---|
| 論文名稱: |
菲、八圈烯與二苯并[n]螺旋烴之合成、結構分析及物性探討 Phenanthrenes, [8]Circulenes, and Dibenzo[n]helicenes―Syntheses, Structural Analyses, and Properties |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 286 |
| 中文關鍵詞: | 鈀金屬催化反應 、多環芳香烴 、菲 、[n]圈烯 、[n]螺旋烴 、應變能 、假旋轉 、翻轉能隙 、消旋能隙 |
| 外文關鍵詞: | Polyarene, Palladium-Catalyzed Reaction, Phenanthrene, [n]Circulene, [n]Helicene, Strain energy, Pseudorotation, Inversion barrier |
| 相關次數: | 點閱:93 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文介紹了作者近期的研究結果,主要為利用鈀金屬與鹵苯化合物進行催化環合反應,開發製備出各類多環芳香烴化合物,包括菲(Phenanthrenes)、全取代八圈烯與其非平面次結構(Persubstituted [8]circulenes and its nonplanar fragments,63與93-96),以及二苯并[n]螺旋烴衍生物(Dibenzo[n]helicenes,123、129與135)等,並且探討它們的結構特性與物理化學性質。
炔類是合成反應中相當重要的結構與起始物,用於製備各種實用且具高價值性的有機化合物。透過鈀金屬催化,將炔類與2-鹵聯苯化合物進行環合反應得到各式菲衍生物,提供一個快速且有效的製備方法。此反應的適用範圍相當廣泛,對於各式具有不同官能基之炔類起始物都有不錯的產率,但是對於合成多取代菲類衍生物所使用之不對稱炔與聯苯化合物,在位向選擇性上,卻由於過於複雜而難以預測。
上述所探討之合成菲類衍生物的方法,可以作為合成八圈烯([8]Circulene,11e)的關鍵步驟。截至目前為止,無取代八圈烯由於高張力的結構與不穩定的性質,以致尚未有人能成功合成。而作者利用適當之反應途徑,以四碘取代之亞四苯基(Tetraiodotetraphenylene,61c和61d)作為起始物,在鈀金屬的催化下與過量之二苯乙炔進行四次的環合反應,而成功地以簡單且溫和的方法合成出全取代八圈烯化合物(Persubstituted [8]circulene),此為成功製備八圈烯結構之首例。
由單晶X-ray繞射實驗可證實,其結構與文獻中之理論計算相同,為一馬鞍型,並具有八軸烯([8]Radialene)的性質。利用變溫核磁共振實驗,探討其高溫下之動態翻轉行為,並且利用理論計算證實全取代八圈烯是經由假旋轉(Pseudorotation)的方式進行反轉,其能障為20.7千卡/莫爾,而非經由平面過渡態的形式反轉。
為了更深入了解八圈烯的各項性質,八圈烯之非平面次結構的探討便為接下來的研究重點。利用不足量之二苯乙炔與四碘取代之亞四苯基進行與上述相似之鈀金屬催化反應,成功合成且純化出一系列全取代八圈烯的非平面次結構93-96,並進行完整研究。此系列化合物的結構也由單晶X-ray繞射實驗分別得知,其結構的變化由馬鞍型之亞四苯基起始物,變為單次環合產物(monoannulated products, 93)與對位雙環合產物(para-diannulated product, 94)之非典型、扭曲之馬鞍型結構,最後,鄰位雙環合產物(ortho-diannulated product, 95)、參環合產物(triannulated products, 96)與全取代八圈烯63,隨著環化數量增加再次轉變為馬鞍型結構。
在環合過程中其應變能(Strain energy)會隨著二苯乙炔之環合數量增加而提高,而全取代之八圈烯結構具有最高之應變能。在片段結構的動態行為研究中,利用變溫核磁共振光譜進行實驗,得到的聚合溫度換算成能量都介於16.4-20.8千卡/莫爾之間,並以理論計算探討得知此現象為外圍苯環取代基的震動或轉動所造成,此過程可視為進行假旋轉之"起始行為"。而鄰位雙環合產物與參環合產物於之實際翻轉行為已由理論計算得到證實,其對應之能量需求分別為46與36千卡/莫爾。利用光物理與電化學分析計算此系列化合物的最高占據分子能階(HOMO)與最低未占據分子能階(LUMO)之能隙(Energe gap),證實隨著環化數量增加、共軛系統延長,放光與吸收波長有紅位移的現象,並且第一氧化電位也隨環化數量增加而降低。
不同於過去利用光化學的方法合成出螺旋烴衍生物,本篇論文利用二鹵取代之多環芳香烴起始物,於鈀金屬催化下,進行"碳-氫鍵"活化生成"碳-碳鍵",環化合成出一系列二苯併[n]螺旋烴結構,並且由單晶X-ray繞射實驗對此系列化合物進行比較與探討。螺旋烴上之取代基(甲基或甲氧基)所在的位置與兩個外接之苯環會影響整體結構之扭曲程度,例如,17,18二甲基取代之二苯併[5]螺旋烴(123)與19,20二甲基取代之二苯併[6]螺旋烴(129)與無取代之螺旋烴相比,其結構較為扭曲,具有相當大之扭轉角(Torsion angle)。此立體障礙所造成的扭曲情形,在過去的參考文獻中顯示並不會對其消旋屏障(Racemization barrier)造成很大的影響,此結果也由理論計算進而證實。最後,利用光物理與電化學分析實驗得到此類螺旋烴化合物的能隙,結果顯示其能隙大小並不會因整體共軛系統長度改變而有太大的變化,反而是對於取代基的種類與數目有較大的影響。
This dissertation presents recent efforts to synthesize various important polyarenes, such as phenanthrene derivatives, persubstituted [8]circulenes and their fragments (63 and 93-96), and dibenzo[n]helicenes (123, 129, and 135), under palladium-catalyzed conditions using haloarenes as starting materials. Alkyne is a useful building block and synthon in the extension of an aromatic system. The palladium-catalyzed annulations of 2-halobiphenyls with alkynes efficiently yielded phenanthrene derivatives. These newly investigated palladium-catalyzed conditions have a large scope and high functional group tolerance, but the regioselectivity in the formation of a highly substituted phenanthrene from an unsymmetrical biphenyl and an unsymmetrical alkyne is generally highly complex and its major product cannot be easily predicted.
The aforementioned synthetic method for preparing phenanthrene was used as the key step in the generation of persubstituted [8]circulenes. In the presence of palladium catalysts, the reaction of tetraiodo-substituted 2,3,6,7,10,11,14,15-octamethoxytetraphenylene (61c) and 2,3,6,7,10,11,14,15-octamethyltetraphenylene (61d) with excess diarylethynes efficiently generated octamethyl- and octamethoxy-substituted octaaryl[8]circulenes (63b, 63c, and 63d), respectively, which are the first reported examples of the [8]circulene family. X-ray crystallography revealed that persubstituted [8]circulene is a saddle-shaped molecule with an [8]radialene character. The saddle-to-saddle inversions of persubstituted [8]circulene via a pseudorotation mechanism were experimentally and theoretically verified, and the energy barrier was determined to be 20.7 kcal/mol.
Persubstituted [8]circulene and its nonplanar fragments (93-96) were obtained by palladium-catalyzed benzannulations of tetraiodotetraphenylene 61d with insufficient di(4-anisyl)ethyne. The structures of a full series of benzannulated tetraphenylenes were unambiguously verified by X-ray crystallography, and they changed from a saddle shape (tetraphenylene) through a twisted saddle (monoannulated and para-diannulated products, 93 and 94) to a saddle (ortho-diannulated and triannulated products and persubstituted [8]circulene 95, 96, and 63j) again. The strain energy of a compound is proportional to the benzannulation number, and persubstituted [8]circulene is the most strained in this series. The dynamic behaviors of these compounds were studied both experimentally and theoretically. Using variable-temperature NMR techniques, barriers to coalescence of the 4-anisyl signals were determined to be in the range from 16.4 to 20.8 kcal/mol. These dynamic behaviors correspond to the bending and the rotation of an aryl substituent, as a kind of "gateway" to the pseudorotation of persubstituted [8]circulene. The photophysical and electrochemical properties of the studied compounds depend strongly on the extent of efficient conjugation. The successive benzannulations red-shift both the absorption and the emission bands, and reduce the first oxidation potential.
Dibenzo[n]helicenes (123, 129, and 135) were prepared by the cyclization of dihalo-substituted polyarenes, and the key step comprised the palladium-catalyzed C-H activation and subsequent C-C bond formation. Methyl or methoxy groups were selectively installed at various positions, yielding a series compounds whose structure-property relationship could be investigated. Structural analyses based on X-ray crystallographic data revealed that 17,18-dimethyl-substituted dibenzo[5]helicenes (123a and 123d), and 19,20-dimethyl-substituted dibenzo-[6]helicene (129) have more twisted structures than the corresponding parent [n]helicenes or dibenzo[n]helicenes. The steric hindrances that are generated by two additionally fused benzene rings and two methyl groups at the C17 and C18 positions do not critically affect the racemization barrier. The photophysical and electrochemical properties of dibenzo[n]helicenes do not strongly depend on the conjugation of the molecular backbone of the molecule, but they are dominantly affected by the number and positions of substituents.
1. (a) Bjørseth, A.; Ramdahl, T. Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker: New York, 1985; (b) Hopf, H. Classics in Hydrocarbon Chemistry. Wiley-VCH: Weinheim, 2000.
2. (a) Kaiser, R. Angew. Chem. 1968, 80, 337; Kaiser, R. Angew. Chem. Int. Ed. 1968, 7, 345; (b) Faraday, M. Phil. Trans. R. Soc. 1825, 115, 440.
3. Loschmidt, J. Chemische Studien: Constitutions-Formeln der Organischen Chemie in Graphischer Darstellung: Das Mariott'sche Gesetz. Wein: Gerold, 1861.
4. (a) Watanabe, M.; Chen, K.-Y.; Chang, Y.-J.; Chow, T.-J. Acc. Chem. Res. 2013, 46, 1606; (b) Zade, S. S.; Bendikov, M. Angew. Chem. 2010, 122, 4104; Zade, S. S.; Bendikov, M. Angew. Chem. Int. Ed. 2010, 49, 4012; (c) Anthony, J. E. Angew. Chem. 2008, 120, 460; Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452.
5. (a) Sun, Z.; Chang, H. ACS Nano 2014, 8, 4133; (b) Xu, Z.; Gao, C. Acc. Chem. Res. 2014, 47, 1267 (c) Yan, Z.; Peng, Z.; Tour, J. M. Acc. Chem. Res. 2014, 47, 1327; (d) Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192; (e) Geim, A. K. Science 2009, 324, 1530.
6. Furniss, B. S. Vogel's Textbook of Practical Organic Chemistry. Pearson Education India, 1989.
7. (a) Clar, E.; John, F. Ber. Dtsch. Chem. Ges. 1929, 62, 3021; (b) Clar, E.; John, F. Ber. Dtsch. Chem. Ges. 1930, 63, 2967.
8. (a) Hasegawa, T.; Takeya, J. Sci. Tech. Adv. Mater. 2009, 10, 024314; (b) Yamashita, Y. Sci. Tech. Adv. Mater. 2009, 10, 024313; (c) Dimitrakopoulos, C. D.; Malenfant, P. R. Adv. Mater. 2002, 14, 99; (d) Bo, X.-Z.; Tassi, N.; Lee, C.; Strano, M.; Nuckolls, C.; Blanchet, G. B. Appl. Phys. Lett. 2005, 87, 203510; (e) Klauk, H.; Gundlach, D. J.; Nichols, J.; Jackson, T. N. IEEE Trans. Electron Dev. 1999, 46, 1258.
9. (a) Payne, M. M.; Parkin, S. R.; Anthony, J. E. J. Am. Chem. Soc. 2005, 127, 8028; (b) Tönshoff, C.; Bettinger, H. F. In Polyarenes I, Siegel, J. S.; Wu, Y.-T., Eds.; Springer: Heidelberg: 2014; pp 1.
10. (a) Watanabe, M.; Chang, Y. J.; Liu, S.-W.; Chao, T.-H.; Goto, K.; IslamMd, M.; Yuan, C.-H.; Tao, Y.-T.; Shinmyozu, T.; Chow, T. J. Nat. Chem. 2012, 4, 574; (b) Clar, E. Ber. Dtsch. Chem. Ges. 1942, 75, 1283.
11. Tönshoff, C.; Bettinger, H. F. Angew. Chem. 2010, 122, 4219.; Tönshoff, C.; Bettinger, H. F. Angew. Chem. Int. Ed. 2010, 49, 4125.
12. Kaur, I.; Jazdzyk, M.; Stein, N. N.; Prusevich, P.; Miller, G. P. J. Am. Chem. Soc. 2010, 132, 1261.
13. (a) Purushothaman, B.; Bruzek, M.; Parkin, S. R.; Miller, A.-F.; Anthony, J. E. Angew. Chem. 2011, 123, 7151; (b) Purushothaman, B.; Bruzek, M.; Parkin, S. R.; Miller, A.-F.; Anthony, J. E. Angew. Chem. Int. Ed. 2011, 50, 7013.
14. (a) Wong, W.-W.; Jones, D. J.; Yan, C.; Watkins, S. E.; King, S.; Haque, S. A.; Wen, X.; Ghiggino, K. P.; Holmes, A. B. Org. Lett. 2009, 11, 975; (b) Watson, M. D.; Jäckel, F.; Severin, N.; Rabe, J. P.; Müllen, K. J. Am. Chem. Soc. 2004, 126, 1402.
15. Pal, S. K.; Setia, S.; Avinash, B.; Kumar, S. Liq. Cryst. 2013, 40, 1769.
16. (a) Rohr, U.; Kohl, C.; Mullen, K.; van de Craats, A.; Warman, J. J. Mater. Chem. 2001, 11, 1789; (b) Rohr, U.; Schlichting, P.; Böhm, A.; Gross, M.; Meerholz, K.; Bräuchle, C.; Müllen, K. Angew. Chem. Int. Ed. 1998, 37, 1434.
17. Sergeyev, S.; Pisula, W.; Geerts, Y. H. Chem. Soc. Rev. 2007, 36, 1902.
18. Konishi, A.; Hirao, Y.; Nakano, M.; Shimizu, A.; Botek, E.; Champagne, B.; Shiomi, D.; Sato, K.; Takui, T.; Matsumoto, K. J. Am. Chem. Soc. 2010, 132, 11021.
19. (a) Abe, M. Chem. Rev. 2013, 113, 7011; (b) Sun, Z.; Wu, J. J. Mater. Chem. 2012, 22, 4151; (c) Morita, Y.; Nishida, S. In Stable Radicals, Hicks, R. G. Ed.; John Wiley & Sons: Chichester, 2010; pp. 81. (d) Sun, Z.; Zeng, Z.; Wu, J. Acc. Chem. Res. 2014, 47, 2582.
20. Clar, E. The Aromatic Sextet. Wiley: London, 1972.
21. Geim, A. K. Rev. Mod. Phys. 2011, 83, 851.
22. Novoselov, K. Rev. Mod. Phys. 2011, 83, 837.
23. (a) Yazyev, O. V. Acc. Chem. Res. 2013, 46, 2319; (b) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel, R. Nature 2010, 466, 470; (c) Banhart, F. Nat. Mater. 2011, 10, 651; (d) Terrones, M. Nature 2009, 458, 845.
24. Neto, A. C.; Guinea, F.; Peres, N.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109.
25. (a) Pascal, R. A. Chem. Rev. 2006, 106, 4809; (b) Balasubramaniyan, V. Chem. Rev. 1966, 66, 567.
26. Harnik, E.; Herbstein, F.; Schmidt, G.; Hirshfeld, F. J. Chem. Soc. 1954, 3288.
27. Bell, F.; Waring, D. H. J. Chem. Soc. 1949, 2689.
28. (a) Lu, J.; Ho, D. M.; Vogelaar, N. J.; Kraml, C. M.; Pascal, R. A. J. Am. Chem. Soc. 2004, 126, 11168; (b) Gingras, M. Chem. Soc. Rev. 2013, 42, 968; (c) Shen, Y.; Chen, C.-F. Chem. Rev. 2011, 112, 1463.
29. (a) Gleiter, R.; Hopf, H. Modern Cyclophane Chemistry. John Wiley & Sons: Weinheim, 2006; (b) Stary, I.; Stara, I.; Dodziuk, H., Strained Hydrocarbons: Beyond the van’t Hoff and Le Bel Hypothesis. Wiley-VCH: Weinheim, 2009.
30. (a) Merner, B. L.; Unikela, K. S.; Dawe, L. N.; Thompson, D. W.; Bodwell, G. J. Chem. Commun. 2013, 49, 5930; (b) Merner, B. L.; Dawe, L. N.; Bodwell, G. J. Angew. Chem. 2009, 121, 5595.; Merner, B. L.; Dawe, L. N.; Bodwell, G. J. Angew. Chem. Int. Ed. 2009, 48, 5487.
31. (a) Bunz, U. H.; Menning, S.; Martín, N. Angew. Chem. 2012, 124, 7202.; Bunz, U. H.; Menning, S.; Martín, N. Angew. Chem. Int. Ed. 2012, 51, 7094; (b) Hirst, E. S.; Jasti, R. J. Org. Chem. 2012, 77, 10473; (c) Omachi, H.; Segawa, Y.; Itami, K. Acc. Chem. Res. 2012, 45, 1378; (d) Kayahara, E.; Patel, V. K.; Yamago, S. J. Am. Chem. Soc. 2014, 136, 2284.
32. (a) Evans, P. J.; Darzi, E. R.; Jasti, R. Nat. Chem. 2014, 6, 404; (b) Kayahara, E.; Patel, V. K.; Yamago, S. J. Am. Chem. Soc. 2014, 136, 2284; (c) Omachi, H.; Nakayama, T.; Takahashi, E.; Segawa, Y.; Itami, K. Nat. Chem. 2013, 5, 572.
33. (a) Dopper, J.; Wynberg, H. Tetrahedron Lett. 1972, 13, 763; (b) Siegel, J. S.; Seiders, T. J. Chem. Br. 1995, 31, 313; (c) Feng, C.-N.; Hsieh, Y.-C.; Wu, Y.-T. Chem. Rec. 2015, 15, 266.
34. (a) Barth, W. E.; Lawton, R. G. J. Am. Chem. Soc. 1966, 88, 380; (b) Petrukhina, M. A.; Andreini, K. W.; Mack, J.; Scott, L. T. J. Org Chem. 2005, 70, 5713; (c) Hanson, J. C.; Nordman, C. Acta Crystallogr. Sect. B 1976, 32, 1147; (d) Wu, Y.-T.; Siegel, J. S. In Polyarenes I, Wu, Y.-T.; Siegel, J. S., Eds.; Springer: Heidelberg, 2014; pp. 63. (e) Kroto, H. W.; Petrukhina, M. A.; Scott, L. T., Eds, Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry. John Wiley & Sons: New Jersey: 2011; (f) Sygula, A. Eur. J. Org. Chem. 2011, 2011, 1611; (g) Wu, Y.-T.; Siegel, J. S. Chem. Rev. 2006, 106, 4843.
35. (a) Yamamoto, K.; Harada, T.; Nakazaki, M.; Naka, T.; Kai, Y.; Harada, S.; Kasai, N. J. Am. Chem. Soc. 1983, 105, 7171; (b) Yamamoto, K.; Sonobe, H.; Matsubara, H.; Sato, M.; Okamoto, S.; Kitaura, K. Angew. Chem. 1996, 108, 69.; Yamamoto, K.; Sonobe, H.; Matsubara, H.; Sato, M.; Okamoto, S.; Kitaura, K. Angew. Chem. Int. Ed. 1996, 35, 69.
36. Wu, Y.-T.; Siegel, J. S. Chem. Rev. 2006, 106, 4843.
37. (a) Kroto, H. Nature 1987, 329, 529; (b) Beck, A.; Bleicher, M.; Crowe, D. W. Excursion into Mathematics, Worth Publisher, Inc: New York, 1969.
38. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
39. Baldridge, K. K.; Siegel, J. S. Theor. Chem. Acc. 1997, 97, 67.
40. (a) Eliseeva, M. N.; Scott, L. T. J. Am. Chem. Soc. 2012, 134, 15169; (b) Scott, L. T.; Jackson, E. A.; Zhang, Q.; Steinberg, B. D.; Bancu, M.; Li, B. J. Am. Chem. Soc. 2012, 134, 107.
41. (a) Krebs, F. C.; Larsen, P. S.; Larsen, J.; Jacobsen, C. S.; Boutton, C.; Thorup, N. J. Am. Chem. Soc. 1997, 119, 1208; (b) Madsen, G. K.; Krebs, F. C.; Lebech, B.; Larsen, F. K. Chem. Eur. J. 2000, 6, 1797; (c) Curtin, D. Y.; Paul, I. C. Chem. Rev. 1981, 81, 525.
42. (a) Hirsch, A. Ed, The Chemistry of the Fullerenes, Wiley-VCH: Weinheim, 2008; pp. I-XI; (b) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. Academic press: New York 1996.
43. Yadav, B.; Kumar, R. Int. J. Nanotechnol. Appl. 2008, 2, 15.
44. Björström, C. M.; Bernasik, A.; Rysz, J.; Budkowski, A.; Nilsson, S.; Svensson, M.; Andersson, M. R.; Magnusson, K. O.; Moons, E. J. Phys. Condens. Matter 2005, 17, L529.
45. Collins, P. G.; Avouris, P. Sci. Am. 2000, 283, 62.
46. (a) Guldi, D. M.; Martin, N., Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications. John Wiley & Sons: Weinheim, 2010; (b) Komatsu, N.; Wang, F. Materials 2010, 3, 3818.
47. (a) Grignard, V. CR Acad. Sci. Paris 1900, 130, 1322; (b) Kharasch, M. S.; Reinmuth, O. Grignard Reactions of Non Metallic Substances, Prentice-Hall: New Jersey, 1954.
48. Diels, O., Nobel Lectures Chemistry 19421962, Elsevier Publishing Co.: Amsterdam-London-New York, 1964, 253.
49. (a) Bawn, C. E. H. Biogr. Mem. Fellows R. Soc. 1975, 21, 569; (b) Ziegler, K. Rubber Chem. Technol. 1965, 38, 23.
50. Brown, H. C. In Nobel Lectures Chemistry, 1971-1980, Frängsmyr, T.; Forsen, S. Eds.; World Scientific: Singapore, 1993; 337.
51. (a) Grubbs, R. H. Angew. Chem. Int. Ed. 2006, 45, 3760; (b) Rouhi, A. M. Chem. Eng. News 2002, 80, 34.
52. (a) Hegedus, L. S. Transition Metals in The Synthesis of Complex Organic Molecules. 2nd ed.; Freeman: New York, 1999.; (b) Motherwell, W. Appl. Organomet. Chem. 2001, 15, 572; (c) Hartwig, J. F. Organotransition Metal Chemistry: from Bonding to Catalysis. Univ Science Books: Sausalito, 2010.
53. (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581; (b) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
54. Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
55. (a) Handy, S. T.; Zhang, X. Org. Lett. 2001, 3, 233; (b) Stille, J. K. Angew. Chem. Int. Ed. 1986, 98, 504.; Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508.
56. King, A. O.; Okukado, N.; Negishi, E.-i. J. Chem. Soc., Chem. Commun., 1977, 19, 683.
57. (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437; (b) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun., 1979, 19, 866; (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
58. (a) Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486; (b) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918.
59. Casalnuovo, A. L.; Calabrese, J. C. J. Am. Chem. Soc. 1990, 112, 4324.
60. Jacks, T. E.; Belmont, D. T.; Briggs, C. A.; Horne, N. M.; Kanter, G. D.; Karrick, G. L.; Krikke, J. J.; McCabe, R. J.; Mustakis, J. G.; Nanninga, T. N. Org. Process Res. Dev. 2004, 8, 201.
61. Kay, M.; Okaya, Y.; Cox, D. Acta Crystallogr. Sect. B 1971, 27, 26.
62. Pauling, L. The Nature of the Chemical Bond and The Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. Vol. 3, Cornell University Press Ithaca: NY, 1960.
63. Armstrong, R. N.; Ammon, H. L.; Darnow, J. N. J. Am. Chem. Soc. 1987, 109, 2077.
64. (a) Cosmo, R.; Hambley, T. W.; Sternhell, S. J. Org. Chem. 1987, 52, 3119; (b) Cosmo, R.; Sternhell, S. Aust. J. Chem. 1987, 40, 35.
65. Bronstein, H. E.; Choi, N.; Scott, L. T. J. Am. Chem. Soc. 2002, 124, 8870.
66. Chang, H.-I.; Huang, H.-T.; Huang, C.-H.; Kuo, M.-Y.; Wu, Y.-T. Chem. Commun. 2010, 46, 7241.
67. (a) Michael, J. P. Nat. Prod. Rep. 2005, 22, 603; (b) Michael, J. P. Nat. Prod. Rep. 2004, 21, 625; (c) Michael, J. P. Nat. Prod. Rep. 2003, 20, 476; (d) Michael, J. P. Nat. Prod. Rep. 2002, 19, 719; (e) Weinreb, S. M. Nat. Prod. Rep. 2009, 26, 758; (f) Hsu, S.-F.; Ko, C.-W.; Wu, Y.-T. Adv. Synth. Catal. 2011, 353, 1756.
68. Yan, J.; Luo, D.; Luo, Y.; Gao, X.; Zhang, G. Int. J. Gynecol Cancer 2006, 16, 165.
69. (a) Li, Z.; Jin, Z.; Huang, R. Synthesis 2001, 2001, 2365; (b) Chemler, S. R. Curr. Bioact. Compd. 2009, 5, 2.
70. (a) He, B.; Tian, H.; Yan, D.; Geng, Y.; Wang, F. J. Mater. Chem. 2011, 21, 14793; (b) Tian, H.; Shi, J.; Dong, S.; Yan, D.; Wang, L.; Geng, Y.; Wang, F. Chem. Commun. 2006, 33, 3498.
71. (a) Mattay, J.; Griesbeck, A., Photochemical Key Steps in Organic Synthesis: An Experimental Course Book. John Wiley & Sons: Weinheim, 2008; (b) Mallory, F. B.; Mallory, C. W. In Organic reactions. John Wiley & Son: New York, 1984.
72. (a) Taylor, E. C.; Andrade, J. G.; Rall, G. J.; McKillop, A. J. Am. Chem. Soc. 1980, 102, 6513; (b) Feldman, K. S.; Ensel, S. M. J. Am. Chem. Soc. 1994, 116, 3357; (c) Evans, D. A.; Dinsmore, C. J.; Evrard, D. A.; DeVries, K. M. J. Am. Chem. Soc. 1993, 115, 6426; (d) Wang, K.-L.; Lü, M.-Y.; Wang, Q.-M.; Huang, R.-Q. Tetrahedron 2008, 64, 7504; (e) Lessene, G.; Feldman, K. S. in Modern Arene Chemistry; Astruc D., Ed.; Wiley-VCH: Weinheim, 2002, pp. 479.
73. Yao, T.; Campo, M. A.; Larock, R. C. Org. Lett. 2004, 6, 2677.
74. (a) Mamane, V.; Hannen, P.; Fürstner, A. Chem. Eur. J. 2004, 10, 4556; (b) Komeyama, K.; Igawa, R.; Takaki, K. Chem. Commun. 2010, 46, 1748; (c) Xie, C.; Zhang, Y.; Yang, Y. Chem. Commun. 2008, 39, 4810; (d) Storch, J.; Čermák, J.; Karban, J.; Císařová, I.; Sýkora, J. J. Org. Chem. 2010, 75, 3137; (e) Donovan, P. M.; Scott, L. T. J. Am. Chem. Soc. 2004, 126, 3108.
75. Wang, Y.; Burton, D. J. Org. Lett. 2006, 8, 5295.
76. (a) Wu, G.; Rheingold, A. L.; Geib, S. J.; Heck, R. F. Organometallics 1987, 6, 1941; (b) Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 62, 7536.
77. Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc. 2010, 132. 14006.
78. Mandal, A. B.; Lee, G.-H.; Liu, Y.-H.; Peng, S.-M.; Leung, M.-K. J. Org. Chem. 2000, 65, 332.
79. Matsumoto, A.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 6557.
80. (a) Gu, Z.; Boursalian, G. B.; Gandon, V.; Padilla, R.; Shen, H.; Timofeeva, T. V.; Tongwa, P.; Vollhardt, K. P. C.; Yakovenko, A. A. Angew. Chem. 2011, 123, 9585; Gu, Z.; Boursalian, G. B.; Gandon, V.; Padilla, R.; Shen, H.; Timofeeva, T. V.; Tongwa, P.; Vollhardt, K. P. C.; Yakovenko, A. A. Angew. Chem. Int. Ed. 2011, 50, 9413 (b) Korotvička, A.; Císařová, I.; Roithová, J.; Kotora, M. Chem. Eur. J. 2012, 18, 4200.
81. Kanno, K.-i.; Liu, Y.; Iesato, A.; Nakajima, K.; Takahashi, T. Org. Lett. 2005, 7, 5453.
82. Shimizu, M.; Nagao, I.; Tomioka, Y.; Hiyama, T. Angew. Chem. 2008, 120, 8216; Shimizu, M.; Nagao, I.; Tomioka, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2008, 47, 8096.
83. Pena, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Am. Chem. Soc. 1999, 121, 5827.
84. Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879.
85. (a) Cacchi, S. J. Organomet. Chem. 1999, 576, 42; (b) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.
86. (a) Campo, M. A.; Zhang, H.; Yao, T.; Ibdah, A.; McCulla, R. D.; Huang, Q.; Zhao, J.; Jenks, W. S.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 6298; (b) Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2002, 124, 14326.
87. Karig, G.; Moon, M.-T.; Thasana, N.; Gallagher, T. Org. Lett. 2002, 4, 3115.
88. Campo, M. A.; Huang, Q.; Yao, T.; Tian, Q.; Larock, R. C. J. Am. Chem. Soc. 2003, 125, 11506.
89. Rubin, M.; Trofimov, A.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10243.
90. Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496.
91. Lafrance, M.; Lapointe, D.; Fagnou, K. Tetrahedron 2008, 64, 6015.
92. Amatore, C.; Bensalem, S.; Ghalem, S.; Jutand, A. J. Organomet. Chem. 2004, 689, 4642.
93. Zhou, C.-X., Ph.D. Dissertation, Iowa State University, 2006.
94. Larock, R.; Yum, E.; Refvik, M. J. Org. Chem. 1998, 63, 7652.
95. Scholl, R.; Meyer, K. Ber. Dtsch. Chem. Ges. 1932, 65, 902.
96. (a) Bhola, R.; Bally, T.; Valente, A.; Cyrański, M. K.; Dobrzycki, Ł.; Spain, S. M.; Rempała, P.; Chin, M. R.; King, B. T. Angew. Chem. 2010, 122, 409.; Bhola, R.; Bally, T.; Valente, A.; Cyrański, M. K.; Dobrzycki, Ł.; Spain, S. M.; Rempała, P.; Chin, M. R.; King, B. T. Angew. Chem. Int. Ed. 2010, 49, 399; (b) Kumar, B.; King, B. T. J. Org. Chem., 2012, 77, 10617.
97. (a) Haddon, R.; Scott, L. T. Pure Appl. Chem. 1986, 58, 137; (b) Haddon, R. C. Acc. Chem. Res. 1988, 21, 243; (c) Haddon, R., J. Am. Chem. Soc. 1990, 112, 3385; (d) Haddon, R. Science 1993, 261, 1545.
98. Diederich, F.; Staab, H. A. Angew. Chem. Int. Ed. 1978, 17, 372.
99. Salcedo, R.; Sansores, L. E.; Picazo, A.; Sansón, L. Comp. Theor. Chem. 2004, 678, 211.
100. Christoph, H.; Grunenberg, J.; Hopf, H.; Dix, I.; Jones, P. G.; Scholtissek, M.; Maier, G. Chem. Eur. J. 2008, 14, 5604.
101. Xiong, X.; Deng, C.-L.; Minaev, B. F.; Baryshnikov, G. V.; Peng, X.-S.; Wong, H. N. Chem. Asian J. 2015, 10, 969.
102. Chen, F.; Hong, Y. S.; Shimizu, S.; Kim, D.; Tanaka, T.; Osuka, A., Angew. Chem. 2015, 127, 10785.; Chen, F.; Hong, Y. S.; Shimizu, S.; Kim, D.; Tanaka, T.; Osuka, A. Angew. Chem. Int. Ed. 2015, 54, 10639
103. Chernichenko, K. Y.; Sumerin, V. V.; Shpanchenko, R. V.; Balenkova, E. S.; Nenajdenko, V. G. Angew. Chem. Int. Ed. 2006, 45, 7367.
104. Nobusue, S.; Miyoshi, H.; Shimizu, A.; Hisaki, I.; Fukuda, K.; Nakano, M.; Tobe, Y. Angew. Chem. 2015, 127, 2118.; Nobusue, S.; Miyoshi, H.; Shimizu, A.; Hisaki, I.; Fukuda, K.; Nakano, M.; Tobe, Y. Angew. Chem. Int. Ed. 2015, 54, 2090.
105. Miyajima, D.; Tashiro, K.; Araoka, F.; Takezoe, H.; Kim, J.; Kato, K.; Takata, M.; Aida, T. J. Am. Chem. Soc. 2009, 131, 44.
106. (a) Mattarella, M.; Haberl, J. M.; Ruokolainen, J.; Landau, E. M.; Mezzenga, R.; Siegel, J. S. Chem. Commun. 2013, 49, 7204; (b) Miyajima, D.; Tashiro, K.; Araoka, F.; Takezoe, H.; Kim, J.; Kato, K.; Takata, M.; Aida, T. J. Am. Chem. Soc. 2008, 131, 44.
107. (a) Fujimoto, T.; Matsushita, M. M.; Awaga, K. J. Phys. Chem. C 2012, 116, 5240; (b) Dadvand, A.; Cicoira, F.; Chernichenko, K. Y.; Balenkova, E. S.; Osuna, R. M.; Rosei, F.; Nenajdenko, V. G.; Perepichka, D. F. Chem. Commun. 2008, 42, 5354.
108. (a) Thulin, B.; Wennerstrom, O. Acta Chem. Scand. 1976, 30, 369; (b) Liljefors, T.; Wennerström, O. Tetrahedron 1977, 33, 2999.
109. Shen, H.-C.; Tang, J.-M.; Chang, H.-K.; Yang, C.-W.; Liu, R.-S. J. Org. Chem. 2005, 70, 10113.
110. Yamamoto, K.; Harada, T.; Okamoto, Y.; Chikamatsu, H.; Nakazaki, M.; Kai, Y.; Nakao, T.; Tanaka, M.; Harada, S.; Kasai, N. J. Am. Chem. Soc. 1988, 110, 3578.
111. Shimizu, M.; Nagao, I.; Tomioka, Y.; Kadowaki, T.; Hiyama, T. Tetrahedron 2011, 67, 8014.
112. Traetteberg, M. Acta Chem. Scand. 1966, 20, 1724.
113. Frisch, M.; Trucks, G.; Schlegel, H. B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., Gaussian 09, Revision A.02; Gaussian, Inc.; Wallingford, CT, 2009.
114. Chai, J.-D.; Head Gordon, M. PCCP 2008, 10, 6615.
115. (a) Hopf, H.; Maas, G. Angew. Chem. Int. Ed. 1992, 31, 931; (b) Rappoport, Z. Chemistry of Dienes and Polyenes, Vol. 2, John Wiley & Sons: Chichester, 1997.
116. Baughman, R.; Kohler, B.; Levy, I.; Spangler, C. Synth. Met. 1985, 11, 37.
117. Wu, Y.-T.; Tai, C.-C.; Lin, W.-C.; Baldridge, K. K. Org. Biomol. Chem. 2009, 7, 2748.
118. Fujimoto, T.; Suizu, R.; Yoshikawa, H.; Awaga, K. Chem. Eur. J. 2008, 14, 6053.
119. Fowler, P. W.; Havenith, R. W.; Jenneskens, L. W.; Soncini, A.; Steiner, E. Angew. Chem. Int. Ed. 2002, 41, 1558.
120. (a) Kruszewski, J.; Krygowski, T. Bull. Acad. Pol. Sci. Chim. 1972, 20, 907; (b) Krygowski, T. M., J. Chem. Inf. Comp. Sci. 1993, 33, 70; (c) Krygowski, T. M.; Cyranski, M. K. Chem. Rev. 2001, 101, 1385.
121. Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem. Rev. 2005, 105, 3842.
122. Krygowski, T. M.; Ejsmont, K.; Stepien, B. T.; Cyranski, M. K.; Poater, J.; Sola, M. J. Org. Chem. 2004, 69, 6634.
123. Clar, E.; Schmidt, W. Tetrahedron 1975, 31, 2263.
124. Dynamic NMR simulations were done with the MEXICO method (Bain, A. D.; Duns, G. J. Can. J. Chem. 1996, 74, 819.) implemented into SpinWorks program package (SpinWorks, v.1.2; Kirk Marat and the University of Manitoba: Winnipeg, MB, Canada, copyright 2001; available from pauli.chem.umanitoba.ca.)
125. Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.
126. Leroux, F.; Schlosser, M. Angew. Chem. Int. Ed. 2002, 41, 4272.
127. Uchiyama, M.; Miyoshi, T.; Kajihara, Y.; Sakamoto, T.; Otani, Y.; Ohwada, T.; Kondo, Y. J. Am. Chem. Soc. 2002, 124, 8514.
128. Jansen, G.; Kahlert, B. R.; Klärner, F. G.; Boese, R.; Bläser, D. J. Am. Chem. Soc. 2010, 132, 8581.
129. (a) Cava, M. P.; Scheel, F., J. Org. Chem. 1967, 32, 1304; (b) Warrener, R. N.; Harrison, P. A. Molecules 2001, 6, 353.
130. Brock‐Nannestad, T.; Nielsen, C. B.; Schau‐Magnussen, M.; Hammershøj, P.; Reenberg, T. K.; Petersen, A. B.; Trpcevski, D.; Pittelkow, M. Eur. J. Org. Chem. 2011, 2011, 6320.
131. Fort, E. H.; Scott, L. T. Angew. Chem. 2010, 122, 6776.
132. Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682.
133. Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779.
134. (a) Schareina, T.; Zapf, A.; Beller, M. Chem. Commun. 2004, 12, 1388; (b) Schareina, T.; Zapf, A.; Mägerlein, W.; Müller, N.; Beller, M. Tetrahedron Lett. 2007, 48, 1087; (c) Ren, Y.; Liu, Z.; He, S.; Zhao, S.; Wang, J.; Niu, R.; Yin, W. Org. Process Res. Dev. 2009, 13, 764.
135. Zhou, C.; Larock, R. C. J. Org. Chem. 2006, 71, 3551.
136. Wan, J.-C.; Huang, J.-M.; Jhan, Y.-H.; Hsieh, J.-C. Org. Lett. 2013, 15, 2742.
137. Sakamoto, Y.; Suzuki, T. J. Am. Chem. Soc. 2013, 135, 14074.
138. Miller, R. W.; Duncan, A. K.; Schneebeli, S. T.; Gray, D. L.; Whalley, A. C. Chem. Eur. J. 2014, 20, 3705.
139. Zhai, L.; Shukla, R.; Rathore, R. Org. Lett. 2009, 11, 3474.
140. (a) Thulin, B.; Wennerström, O. Tetrahedron Lett. 1977, 18, 929; (b) Leach, D. N.; Reiss, J. A. J. Org. Chem. 1978, 43, 2484.
141. Kruszewski, J.; Krygowski, T. Tetrahedron Lett. 1972, 13, 3839.
142. (a) Irngartinger, H.; Reibel, W. Acta Crystallogr., Sect. B. 1981, 37, 1724; (b) Irngartinger, H.; Reibel, W.; Sheldrick, G. Acta Crystallogr., Sect. B. 1981, 37, 1768.
143. (a) Grimme, S.; Peyerimhoff, S. Chem. Phys. 1996, 204, 411; (b) Janke, R. H.; Haufe, G.; Würthwein, E. U.; Borkent, J. H. J. Am. Chem. Soc. 1996, 118, 6031.
144. Fuchter, M. J.; Weimar, M.; Yang, X.; Judge, D. K.; White, A. J. Tetrahedron Lett. 2012, 53, 1108.
145. Rajca, A.; Miyasaka, M.; Xiao, S.; Boratyński, P. J.; Pink, M.; Rajca, S. J. Org. Chem. 2009, 74, 9105.
146. Sudhakar, A.; Katz, T. J. J. Am. Chem. Soc. 1986, 108, 179.
147. (a) Huang, H.; Stewart, T.; Gutmann, M.; Ohhara, T.; Niimura, N.; Li, Y.-X.; Wen, J.-F.; Bau, R.; Wong, H.-N. J. Org. Chem. 2008, 74, 359; (b) Rashidi-Ranjbar, P.; Man, Y. M.; Sandstroem, J.; Wong, H.-N. J. Org. Chem. 1989, 54, 4888; (c) Rosdahl, A.; Sandström, J. Tetrahedron Lett. 1972, 13, 4187; (d) Senkler Jr, G.; Gust, D.; Riccobono, P. K.; Mislow, K. J. Am. Chem. Soc. 1972, 94, 8626; (e) Gust, D.; Senkler, G.; Mislow, K. J. Chem. Soc., Chem. Commun. 1972, 24, 1345; (f) Bachrach, S. M. J. Org. Chem. 2009, 74, 3609.
148. Zhang, Q.; Kawasumi, K.; Segawa, Y.; Itami, K.; Scott, L. T. J. Am. Chem. Soc. 2012, 134, 15664.
149. Shen, M.; Ignatyev, I. S.; Xie, Y.; Schaefer III, H. F. J. Phys. Chem. 1993, 97, 3212.
150. Yamamoto, O.; Nakanishi, H. Tetrahedron 1973, 29, 781.
151. Kanth, S. R.; Reddy, G. V.; Yakaiah, T.; Narsaiah, B.; Rao, P. S. Synth. Commun. 2006, 36, 3079.
152. (a) Lai, Y.-H.; Lee, S.-M. J. Org. Chem. 1988, 53, 4472; (b) Lai, Y.-H. J. Chem. Soc., Perkin Trans. 2 1986, 11, 1667.
153. (a) Cozzi, F.; Cinquini, M.; Annuziata, R.; Siegel, J. S. J. Am. Chem. Soc. 1993, 115, 5330; (b) House, H. O.; Hrabie, J. A.; VanDerveer, D. J. Org. Chem. 1986, 51, 921; (c) Clough, R. L.; Roberts, J. D. J. Am. Chem. Soc. 1976, 98, 1018.
154. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, 2004; Chapter 16.
155. (a) Martin, R.; Marchant, M. J. Tetrahedron 1974, 30, 347. (b) Goedicke, C.; Stegemeyer, H. Tetrahedron Lett. 1970, 11, 937.
156. (a) Schulman, J. M.; Disch, R. L. J. Phys. Chem. A 1999, 103, 6669; (b) Portella, G.; Poater, J.; Bofill, J. M.; Alemany, P.; Sola, M. J. Org. Chem. 2005, 7, 2509; (c) Bultinck, P.; Ponec, R.; Van Damme, S. J. Phys. Org. Chem. 2005, 18, 706; (d) Giambiagi, M.; de Giambiagi, M. S.; dos Santos Silva, C. D.; de Figueiredo, A. P. PCCP 2000, 2, 3381. (e) Martin, R.; Marchant, M. J. Tetrahedron 1974, 30, 347.
157. (a) Newman, M. S.; Darlak, R. S.; Tsai, L.-L. J. Am. Chem. Soc. 1967, 89, 6191; (b) Kneten, N.; Krause, N.; Carmichael, T.; Weigang, O. J. Am. Chem. Soc. 1962, 84, 1738; (c) Furche, F.; Ahlrichs, R.; Wachsmann, C.; Weber, E.; Sobanski, A.; Vögtle, F.; Grimme, S. J. Am. Chem. Soc. 2000, 122, 1717.
158. (a) Martin, R.; Marchant, M.-J. Tetrahedron Lett. 1972, 13, 3707; (b) Lakshman, M. K.; Kole, P. L.; Chaturvedi, S.; Saugier, J. H.; Yeh, H.-J.; Glusker, J. P.; Carrell, H.; Katz, A. K.; Afshar, C. E.; Dashwood, W.-M. J. Am. Chem. Soc. 2000, 122, 12629; (c) Rulíšek, L.; Exner, O.; Cwiklik, L.; Jungwirth, P.; Starý, I.; Pospíšil, L.; Havlas, Z. J. Phys. Chem. C 2007, 111, 14948.
159. (a) Weitzenböck, R.; Klingler, A. Monatsh. Chem. 1918, 39, 315; (b) Collins, S. K.; Grandbois, A.; Vachon, M. P.; Côté, J. Angew. Chem. Int. Ed. 2006, 45, 2923; (c) Storch, J.; Sýkora, J.; Cermák, J.; Karban, J.; Císařová, I.; Růžička, A. J. Org. Chem. 2009, 74, 3090.
160. Newman, M. S.; Lednicer, D. J. Am. Chem. Soc. 1956, 78, 4765.
161. Martin, R. H. Angew. Chem. Int. Ed. 1974, 13, 649.
162. Martin, R.; Baes, M. Tetrahedron 1975, 31, 2135.
163. (a) Uozumi, Y.; Tanahashi, A.; Lee, S.-Y.; Hayashi, T. J. Org. Chem. 1993, 58, 1945; (b) Caeiro, J.; Peña, D.; Cobas, A.; Pérez, D.; Guitián, E. Adv. Synth. Catal. 2006, 348, 2466; (c) Grandbois, A.; Collins, S. K. Chem. Eur. J. 2008, 14, 9323; (d) Nakano, K.; Hidehira, Y.; Takahashi, K.; Hiyama, T.; Nozaki, K. Angew. Chem. Int. Ed. 2005, 44, 7136.
164. (a) Urbano, A. Angew. Chem. Int. Ed. 2003, 42, 3986; (b) Collins, S. K.; Vachon, M. P. Org. Biomol. Chem. 2006, 4, 2518.
165. (a) Takenaka, N.; Sarangthem, R. S.; Captain, B. Angew. Chem. 2008, 120, 9854; (b) Takenaka, N.; Chen, J.; Captain, B. Org. Lett. 2011, 13, 1654; (c) Takenaka, N.; Chen, J.; Captain, B.; Sarangthem, R. S.; Chandrakumar, A. J. Am. Chem. Soc. 2010, 132, 4536.
166. (a) Gold, T. Nature 1952, 169, 322; (b) McIntosh, A. O.; Robertson, J. M.; Vand, V. J. Chem. Soc. 1954, 1661.
167. (a) Zsoldos, L. Acta Crystallogr. 1958, 11, 835; (b) Declerq, J. P.; Germain, G.; Main, P.; Woolfson, M. M. Acta Crystallogr. Sect. A 1973, 29, 231.
168. Beurskens, P.; Beurskens, G, Cryst. Struct. Commun. 1976, 5, 241.
169. Laarhoven, W. H.; Boumans, P. G. F. Recl. Trav. Chim. Pays-Bas 1975, 94, 114.
170. Pradhan, A.; Dechambenoit, P.; Bock, H.; Durola, F. Angew. Chem. Int. Ed. 2011, 50, 12582.
171. Seibel, J.; Allemann, O.; Siegel, J. S.; Ernst, K.-H. J. Am. Chem. Soc. 2013, 135, 7434.
172. Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2011, 40, 3430.
173. Jančařík, A.; Rybáček, J.; Cocq, K.; Vacek Chocholoušová, J.; Vacek, J.; Pohl, R.; Bednárová, L.; Fiedler, P.; Císařová, I.; Stará, I. G. Angew. Chem. Int. Ed. 2013, 52, 9970.
174. (a) Lafrance, M.; Gorelsky, S. I.; Fagnou, K., J. Am. Chem. Soc. 2007, 129, 14570; (b) Ackermann, L. Chem. Rev. 2011, 111, 1315.
175. Hsu, W.-C. Master's thesis, 2015, National Cheng Kung University, Taiwan.
176. Yamamoto, K.; Okazumi, M.; Suemune, H.; Usui, K. Org. Lett. 2013, 15, 1806.
177. Bédard, A. C.; Vlassova, A.; Hernandez‐Perez, A. C.; Bessette, A.; Hanan, G. S.; Heuft, M. A.; Collins, S. K. Chem. Eur. J. 2013, 19, 16295.
178. Carreras, J.; Patil, M.; Thiel, W.; Alcarazo, M. J. Am. Chem. Soc. 2012, 134, 16753.
179. De Rango, C.; De, R. Cryst. Struct. Commun. 1973, 2, 189.
180. (a) Laarhoven, W.; Cuppen, T. J. Tetrahedron 1974, 30, 1101; (b) Borkent, J.; Laarhoven, W. Tetrahedron 1978, 34, 2565.
181. Kashihara, H.; Asada, T.; Kamikawa, K. Chem. Eur. J. 2015, 21, 6523.
182. Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 7763.
183. Yamamoto, K.; Okazumi, M.; Suemune, H.; Usui, K. Org. Lett. 2013, 15, 1806.
184. Janke, R. H.; Haufe, G.; Würthwein, E.-U.; Borkent, J. H. J. Am. Chem. Soc. 1996, 118, 6031.
185. Antelo Miguez, J. M.; Adrio, L. A.; Sousa-Pedrares, A.; Vila, J. M.; Hii, K. K. J. Org. Chem. 2007, 72, 7771.
186. Campo, M. A.; Larock, R. C. Org. Lett. 2000, 2, 3675.
187. Fürstner, A.; Kennedy, J. W. Chem. Eur. J. 2006, 12, 7398.
188. Torraca, K. E.; Huang, X.; Parrish, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 10770.
189. Varela, J. A.; Peña, D.; Goldfuss, B.; Denisenko, D.; Kulhanek, J.; Polborn, K.; Knochel, P. Chem. Eur. J. 2004, 10, 4252.
190. Cheng, X.; Hou, G.-H.; Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2004, 6, 2381.
191. Shirakawa, E.; Kitabata, T.; Otsuka, H.; Tsuchimoto, T., Tetrahedron 2005, 61, 9878.
192. Novák, Z.; Nemes, P.; Kotschy, A. Org. Lett. 2004, 6, 4917.
193. Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1981, 46, 5340.
194. Buck, M.; Chong, J. M. Tetrahedron Lett. 2001, 42, 5825.
195. Kropp, P. J.; Crawford, S. D. J. Org. Chem. 1994, 59, 3102.
196. Ma, S.; He, Q. Tetrahedron 2006, 62, 2769.
197. Weiss, H. M.; Touchette, K. M.; Angell, S.; Khan, J. Org. Biomol. Chem. 2003, 1, 2152.
198. Boyle, N. M.; Coleman, A. C.; Long, C.; Ronayne, K. L.; Browne, W. R.; Feringa, B. L.; Pryce, M. T. Inorg. Chem. 2010, 49, 10214.
199. Bertrand, G.; Tortech, L.; Fichou, D.; Malacria, M.; Aubert, C.; Gandon, V. Organometallics 2011, 31, 126.
200. Miller, A. D.; Tannaci, J. F.; Johnson, S. A.; Lee, H.; McBee, J. L.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 4917.
201. Awad, W. I.; Kamel, A. M. J. Org. Chem. 1960, 25, 947.
202. Dyakonov, I.; Domareva, T. Zh. Obshch. Khim. 1959, 29, 3098.
203. Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2002, 124, 14326.
204. Mitchell, R. H.; Mazuch, L.; Shell, B.; West, P. R. Can. J. Chem. 1978, 56, 1246.
205. Kabir, S. H.; Hasegawa, M.; Kuwatani, Y.; Yoshida, M.; Matsuyama, H.; Iyoda, M. J. Chem. Soc., Perkin Trans. 1 2001, 2, 159.
206. Macé, Y.; Raymondeau, B.; Pradet, C.; Blazejewski, J.-C.; Magnier, E. Eur. J. Org. Chem. 2009, 1390.
207. Betson, M. S.; Bracegirdle, A.; Clayden, J.; Helliwell, M.; Lund, A.; Pickworth, M.; Snape, T. J.; Worrall, C. P. Chem. Commun. 2007, 7, 754.
208. Venkateswarlu, K.; Suneel, K.; Das, B.; Reddy, K. N.; Reddy, T. S. Synth. Commun. 2008, 39, 215.
209. Weimar, M.; Correa da Costa, R.; Lee, F.-H.; Fuchter, M. J. Org. Lett. 2013, 15, 1706.
210. Yao, Z.-J.; Ye, B.; Wu, X.-W.; Wang, S.; Wu, L.; Zhang, Z.-Y.; Burke, T. R. Bioorg. Med. Chem. 1998, 6, 1799.
校內:2021-02-02公開