簡易檢索 / 詳目顯示

研究生: 蘇怡禎
Su, Yi-Chen
論文名稱: 以溫度轉換策略進行纖維素料源之細菌與酵素水解並進行暗醱酵產氫
BioH2 production from cellulosic hydrolysate prepared via temperature-shift-enhanced bacterial/enzymatic cellulose hydrolysis
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 108
中文關鍵詞: 暗醱酵產氫Clostridium butyricum CGS5Cellulomonas uda溫度轉換策略酸鹼前處理纖維素水解酵素纖維素料源纖維素水解
外文關鍵詞: Clostridium butyricum CGS5, cellulose hydrolysis, cellulolytic enzymes, Cellulomonas uda, dark hydrogen fermentation, Temperature-shift atrategy, acid/alkaline pretreatment, cellulosic feedstock
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用纖維素料源生產生質氫氣被視為具發展性及經濟價值的。本研究利用兩階段程序將纖維素料源轉化成氫氣能源。首先以溫度轉換策略來進行纖維素料源之酵素水解生成還原糖,接著以還原糖為基質利用暗氫。其中溫度轉換策略可有效提升纖維素料源酵素水解時之還原糖產量,首先將生產纖維素水解酵素之菌株Cellulomonas uda E3-01培養於35oC條件下,使其大量生產纖維素水解酵素後,利用離心將菌體以及上清液進行分離,接著再將含有酵素之上清液加入新的碳源基質後,提升反應溫度至45oC,以抑制菌株生長及避免還原糖消耗,並藉由升溫來加速纖維素水解。當使用純纖維素 (CMC)、半纖維素 (xylan) 及農業廢棄物 (蔗渣)醱酵程序進行生物產為碳源基質進行纖維素水解時,由溫度轉換策略之實驗結果顯示,此策略確實能有效提升水解液中還原糖之產量,尤其是小分子醣類(單糖、雙糖)的部分。酸 (磷酸) 與鹼 (氫氧化鈉)前處理有助於天然農業廢棄物 (蔗渣) 之酵素水解,尤其是利用磷酸進行前處理,並結合溫度策略水解蔗渣後,可得到較多的葡萄糖與纖維二糖含量。最後,以CMC與xylan進行水解所得之水解液,利用Clostridium butyricum CGS5菌株進行暗醱酵產氫時,其最佳之產氫效率分別為8.8 與6.0 mmol H2/g reducing sugar。利用蔗渣為料源,以溫度轉換策略所得之水解液進行產氫,可得產氫效率為6.0 mmol H2/g reducing sugar。

    Biohydrogen from cellulosic feedstock has been considered a promising and economical route of producing bioenergy. Converting inert cellulosic materials to fermentable feedstock via pretreatment/hydrolysis is the key technology towards efficient bioenergy production. In this work, pure (carboxymethyl-cellulose (CMC) and xylan) and natural (bagasse) cellulosic materials were first pretreated by acid and alkaline reagents, and was then hydrolyzed by extracellular cellulase/xylanase produced from an isolated Cellulomonas uda E3-01 strain. A temperature-shift strategy (35oC for cellulolytic enzymes production and 45oC for hydrolysis reaction) was used to increase the reducing sugar (especially, monosaccharide and disaccharide) concentration in the hydrolysates. The CMC, xylan, and bagasse hydrolysates were successfully converted to H2 via dark fermentation with Clostridium butyricum CGS5, attaining a maximum hydrogen yield of 8.8 mmol H2/g reducing sugar (7.9 mmol H2/g substrate), 6.0 mmol H2/g reducing sugar (5.4 mmol H2/g substrate), and 6.0 mmol H2/g reducing sugar (5.4 mmol H2/g substrate).

    摘要 I Abstract II Acknowledgement III Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Motivation and purpose 1 1.2 Outline of the thesis 3 Chapter 2 Literature review 5 2.1 Strain of cellulose hydrolysis 5 2.2 Lignocellulose 9 2.2.1 Cellulose 11 2.2.2 Hemicellulose 11 2.2.3 Lignin 12 2.3 Cellulose pretreatment/hydrolysis 13 2.3.1 Physical pretreatment 13 2.3.1.1 Mechanical comminution 13 2.3.1.2 Pyrolysis 14 2.3.2 Physicochemical pretreatment 14 2.3.2.1 Steam explosion 14 2.3.2.2 Ammonia fiber explosion (AFEX) 15 2.3.2.3 Carbon dioxide explosion 16 2.3.3 Chemical pretreatment 16 2.3.3.1 Ozonolysis 16 2.3.3.2 Acid hydrolysis 17 2.3.3.3 Alkaline hydrolysis 18 2.3.3.4 Organosolv Process 19 2.3.4 Biological pretreatment 20 2.3.4.1 Bacterial hydrolysis 21 2.3.4.2 Enzymatic hydrolysis 21 2.4 Hydrogen production 24 2.4.1 Physiochemical hydrogen production 25 2.4.1.1 Thermo chemical method 25 2.4.1.2 Electrochemical method 26 2.4.2 Biological hydrogen production 26 2.4.3 Hydrogen gas production by dark fermentation 30 2.5 Biological hydrogen production from cellulosic hydrolysate 33 Chapter 3 Materials and methods 36 3.1 Chemicals and Material 36 3.2 Equipments 38 3.3 Bacterial strains and cultivation medium 39 3.3.1 The cellulase-producing bacteria and culture condition 39 3.3.2 Hydrogen-producing anaerobic bacteria and culture condition 40 3.4 Analytical methods 41 3.4.1 Determination of reducing sugar concentration by DNS method 41 3.4.2 Determination of total sugar concentration by phenol-sulfuric acid 42 3.4.3 Determination of protein concentration 43 3.4.4 Determination of soluble products by HPLC 44 3.4.5 Determination of gas products by GC 44 3.4.6 Determination of cellulase activity 44 3.4.6.1 Exo-glucanase activity 45 3.4.6.2 Xylanase activity 45 3.4.6.3 Endo-glucanase activity 45 3.4.6.4 β-glucosidase activity 46 3.4.7 Cellulose enzyme assay (Congo Red) 46 3.4.8 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Zymography 46 3.5 Experimental methods 48 3.5.1 Pretreatment method 48 3.5.1.1 NaOH pretreatment 48 3.5.1.2 H3PO4 pretreatment 48 3.5.2 Temperature shift method 49 3.5.3 Optimal condition for producing cellulase and xylanase 49 3.5.4 Optimal condition for enzymatic hydrolysis 50 3.5.5 Biohydrogen production from cellulosic hydrolysate 50 Chapter 4 Results and discussion 51 4.1 Cellulase-producing microorganism 51 4.1.1 Optimum reaction temperature of enzyme produced by Cellulomonas uda E-03 52 4.1.2 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Zymography 53 4.2 Optimal condition for producing cellulase and xylanase 54 4.2.1 Effect of dissolved oxygen on cellulase/xylanase production 54 4.2.2 Effect of temperature, agitation rate and pH on cellulase/xylanase production 56 4.2.3 Effect of carbon source (CMC) concentration on cellulase/xylanase production 61 4.3 Effects of sugar inhibition on cellulase and xylanase production 64 4.3.1 Effect of glucose concentration on enzyme production 64 4.3.2 Effect of xylose concentration on enzyme production 65 4.4 Optimal condition for cellulose enzymatic hydrolysis by temperature-shift method 66 4.4.1 Profiles of reducing sugar production, and cellulolytic enzyme activity during temperature-shift operations 66 4.4.2 Effect of pH on enzymatic hydrolysis 70 4.4.3 Effect of agitation rate on enzymatic hydrolysis 73 4.4.4 Effect of carbon source (CMC) concentration on enzymatic hydrolysis 74 4.4.5 Effect of carbon source (Xylan) concentration on enzymatic hydrolysis 78 4.4.6 Pretreatment of bagasse by alkaline and acid methods 82 4.4.6.1 SEM analysis 82 4.4.6.2 Effect of pretreatment method on enzymatic hydrolysis of bagasse 84 4.5 Effects of sugar inhibition on cellulase and xylanase activities during enzyme hydrolysis of cellulosic materials 88 4.5.1 Effect of glucose inhibition on endoglucanase activity during enzymatic hydrolysis of CMC 88 4.5.2 Effect of xylose inhibition on xylanase during enzymatic hydrolysis of xylan 89 4.6 Bio-H2 production from cellulosic hydrolysate by temperature-shift strategy 91 4.6.1 Bio-H2 production from CMC hydrolysate 91 4.6.2 Bio-H2 production from xyaln hydrolysate 93 4.6.3 Bio-H2 production from bagasse hydrolysate 95 Chapter 5 Conclusions 98 References 99 Appendix curriculum vitae 107

    Amouri, B., Gargouri, A., 2006. Characterization of a novel–glucosidase from a Stachybotrys strain. Biochem. Eng. J., 32, 191-197.
    APHA, 1995. Standard Methods for the Examination of Water and Wastewater. . American Public Health Association, New York, USA.
    Aroutiounian, V. M., Arakelyan, V. M., Shahnaxaryan, G. E., 2005. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy, 78, 591-592.
    Borck, T.D., Madigan, M. T., Martinko, J. M., 1994. Parker J. Biology of microorganisms, 7th edn. Prentice-Hall, New Jersey.
    Cara, C., Moya, M., Ballesteros, I., Negro, M.J., Gonzalez, A., Ruiz, E., 2007. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem., 42, 1003-1009.
    Castellanos, O.F., Sinitsyn, A.P., Vlasenko, E.Y., 1995. Evaluation of hydrolysis conditions of cellulosic materials by Penicillium cellulase. Bioresour. Technol., 52, 109-117.
    Chang, V. S., Holtzapple, M. T., 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84-86, 5-37.
    Chang, J.S., Lee, K.S., Lin, P.J., 2002. Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrog. Energy 27(11-12), 1167-1174.
    Chen, C.Y., Yang, M.H., Yeh, K.L., Chang, J.S., 2008a. Biohydrogen production using sequential dark and photo fermentation processes. Int. J. Hydrogen Energy, 33, 4755-4762.
    Chen, S.D., Lee, K.S., Chen, W.M., Lo, Y.C., Wu, J.F., Lin, C.Y., Chang, J.S., 2008b. Batch and continuous fermentative hydrogen production from starch hydrolysate using Clostridium species. Int. J. Hydrogen Energy, 33, 1803-1812.
    Chen, S.D., Sheu, D.S., Chen, W.M., Lo, Y.C., Huang, T.Y., Lin, C.Y., Chang, J.S., 2007. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Biotechnol. Prog., 23, 1312-1320.
    Chen, W.M., Tseng, Z.J., Lee, K.S., Chang, J.S., 2005. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy, 30, 1063-1070.
    Chen, M., Zhao, J., Xia, L., 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym., 71, 411-415.
    Cheng, S. S., Chang, S. M., Chen, S. T., 2002. Effects of volatile fatty acids on a thermophilic anaerobic hydrogen fermentation process degrading peptone. Water Sci. Technol., 46, 209-214.
    Coral, G., Arikan, B., Ünaldi, M. N., Güvenmez, H., 2002. Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type strain. Turk. J. Biol., 26, 209-213.
    Das, D., Veziroglu, T. N., 2001. Hydrogen production by biological processes: a survey of literature. Int. J. of Hydrogen Energy, 26, 13-28.
    Det Biovidenskabelige Fakultet, website: http://www.life.ku.dk/
    Emtiazi, G., Nahvi, I., 2000. Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass and Bioenergy, 19, 31-37.
    Ferchichi, M., Crabbe, E., Gil, G. H., Hintz, W., Almadidy, A., 2005. Influence of initial pH on hydrogen production from cheese whey. J. Biotechnol., 120, 402-409.
    Han, S.-K., Shin, H.-S., 2004. Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrogen Energy, 29, 569-577.
    Heinzel, A.,Vogel, B., Hübner, P., 2002. Reforming of natural gas – hydrogen generation for small scale stationary fuel cell systems. J. Power Sources, 150, 202-207.
    Huang, T. I., 2006. Enhancing two-stage biohydrogen production efficiency from starch using thermophilic starch hydrolysis strategy. Master thesis. Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
    Javed, M. M., Khan, T. S., Haq, I., 2007. Sugar cane bagasse pretreatment: an attempt to enhance the production potential of cellulases by humicola insolens TAS-13. Electronic journal of environmental, agricultural and food chemistry, 6(8), 2290-2296.
    Kadar, Z., De Vrije, T., van Noorden, G. E., Budde, M. A. W., Szengyel, Z., Réczey K., Claassen, P. A. M., 2004. Yields from glucose, xylose and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl. Biochem. Biotechnol., 113-116, 497-508.
    Kargi, F., Kapdan, I. K., 2005. Biohydrogen production from waste materials. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005.
    Kim, S., Dale, B.E., 2004. Global potential bioethanol production from wasted crops and crop residules. Biomass and Bioenergy, 26, 361-375.
    Kumar, N., Das, D., 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microbial Technol., 29, 280-287.
    Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48, 3713-3729.
    Kumar, R., Wyman, C. E., 2008. Effect of enzyme supplementation at moderate cellulase loading on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol. Bioeng., 102(2), 457-467.
    Lee, K.S., Wu, J.F., Lo, Y.S., Lo, Y.C., Lin, P.J., Chang, J.S., 2004. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol. Bioeng. 87(5), 648-657.
    Lo, Y.C., Chen, S.D., Chen, C.Y., Huang, T.I., Lin, C.Y., Chang, J.S., 2008a. Combining enzymatic hydrolysis and dark-photo fermentation processes for hydrogen production from starch feedstock: A feasibility study. Int. J. Hydrogen Energy, 33, 5224-5233.
    Lo, Y.C., Chen, W.M., Hung, C.H., Chen, S.D., Chang, J.S., 2008b. Dark H2 fermentation from sucrose and xylose using H2-producting indigenous bacteria: Feasibility and kinetic studies. Water Res., 42, 827-847.
    Lo, Y.C., Bai, M.D., Chen, W.M., Chang, J.S., 2008c. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour. Technol., 99, 8299-8303.
    Lo, Y.C., Su, Y.C., Chen, W.M., Chang, J.S., 2009. Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis. Bioresour. Technol. (BITE-D-09-01144R1)
    Malina, J.F., Pohland, F. G., 1992. Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Pub Co, USA.
    Moxley, G., Zhu, Z., Percival Zhang, Y. H., 2008. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J. Agric. Food Chem., 56, 7885-7890.
    Mizuno, O., Ohara, T., Shinya, M., Noike, T., 2000. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci. Technol., 42, 345.
    Nakamura, K., Kitamura, K., 1985. Process for production of cellulase. United States Patent, 439131.
    Nakamura, Y., Sawada, T., Inoue, E., 2001. Enhanced ethanol production from enzymatically treated steam-exploded rice straw using extractive fermentation. J. Chem. Technol. Biotechnol., 76, 879-884.
    Nath, K., Das, D., 2004. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol Biotechnol., 65, 520-529.
    Nokie, T., Mizuni, O., 2000. Hydrogen fermentation of organic municipal wastes. Water Sci. Technol., 42, 155-162.
    Nguyen, B. N. T., Leclerc, C. A., 2008. Catalytic partial oxidation of methyl acetate as a model to investigate the conversion of methyl esters to hydrogen. Int. J. of Hydrogen Energy., 33, 1295-1303.
    Ni, M., Leung, D. Y. C., Leung, M. K. H., Sumathy, K., 2006. An overview of hydrogen production from biomass. Fuel Process. Technol., 87, 461-472.
    Nitisinprasert, S., Temmes, A., 1991. The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CMC126 isolated from municipal sewage sludge. J. Appl. Bacteriol., 71, 154-161.
    Okamoto, M., Miyahara, T., Mizuno, O., Noike, T., 2000. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci. Technol., 41, 25-32.
    OPEC, Organization of the Petroleum Exporting Countries, website: http://www.opec.org, 2008.
    Oyekola, O.O. , Ngesi, N., Whiteley, C.G., 2007. Isolation, purification and characterization of an endoglucanase and β-glucosidase from an anaerobic sulphidogenic bioreactor. Enzyme Microb. Technol., 40, 637-644.
    Silverstein, R. A., Chen, Y., Shivappa, R.R.S., Boyette, M.D., Osborne, J., 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol., 98, 3000-3011.
    Subramaniyan, S., Prema, P., 2000. Cellulase-free xylanase from Bacillus and other microorganisms. FEMS Microbiology Letters., 183, 1-7.
    Tanisho, S., Ishiwata, Y., 1995. Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. Int. J. Hydrogen Energy, 20, 541-545.
    Taguchi, F., Yamada, K., Hasegawa, K., Taki-Saito, T., Hara, K., 1996. Continuous hydrogen production by Clostridium sp. strain No. 2 from cellulose hydrolysate in an aqueous two-phase system. J. Ferment. Bioengineering, 82, 80-83.
    Ueno, Y., Otsuka, S., Morimoto, M., 1996. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng., 82, 94-197.
    Ustinov, B. B., Gusakov, A. V., Antonov, A. I., Sinitsyn, A. P., 2008. Comparison of properties and mode of action of six secreted xylanases from Chrysosporiuym lucknowense. Enzyme Microb. Technol., 43, 56-65.
    Wang, C. C., Chang, C. W., Chu, C. P., Lee, D. J., Chang, B. V., Liao, C. S., 2003. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J. Biotechnol., 102, 83-92.
    Wu, J. F., 2006. Biohydrogen production using starch as the carbon substrate. Master thesis. Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
    Wu, J.-H., Lin, C.-Y., 2004. Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci. Technol. 49, 223-228.
    Xia, L.M., Sheng, X.L., 2004. High-yield cellulase production by Trichoderma reesei ZU-02 on corncob residues. Bioresour. Technol., 91, 259-262.
    Xiao, Z., Zhang, X., Gregg, D. J., Saddler, J. N., 2004. Effects of sugar inhibition on cellulasesa and β-glucosidase hydrolysis of softwood substrates. Appl. Biochem. Biotechnol.., 115, 1115-1126.
    Yokoi, H., Saitsu, A., Hiroyuki, U., Hirose, J., Hayashi, S., Taksaki, Y., 2001. Microbial hydrogen production from sweet potato starch residue. J. Biosci. Bioeng., 91, 58-63.
    Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., Takasaki, Y., 1998. H2 production form starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol. Lett. 20, 143-147.
    Yu, H., Zhu, Z., Hu, W., Zhang, H., 2002. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy, 27, 1359-1365.
    Zhang, T., Liu, H., Fang, H. H. P., 2003. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manage., 69, 149-156.
    Zhang, Y. P., Ding, S., Mielenz, J. R., Cui, J., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R., Lynd, L. R., 2007. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng., 97 (2), 214-223.
    Zhu, H., Suzuki, T., Tsygankov, A. A., Asada, Y., Miyake, J., 1999. Hydrogen production from tofu wastewater by Rhodobacter sphaerodies immobilized in agar gels. Int. J. Hydrogen Energy, 24, 305-310.

    無法下載圖示 校內:2108-07-14公開
    校外:2108-07-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE