| 研究生: |
魏國峰 Wei, Kuo-feng |
|---|---|
| 論文名稱: |
應用於MB-OFDM UWB接收機之CMOS射頻晶片的研製 Design of CMOS RFICs for MB-OFDM UWB RF Receiver |
| 指導教授: |
莊惠如
Chuang, Huey-ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 寬頻射頻接收機 、降頻混頻器 、射頻CMOS晶片 |
| 外文關鍵詞: | RFICs, CMOS, UWB RF Receiver, down-conversion mixer |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用TSMC CMOS 0.18 µm製程設計應用於UWB接收機之射頻CMOS晶片及射頻前端電路的系統整合,包含3-5-GHz低電壓寬頻降頻混頻器與升頻混頻器、寬頻射頻接收機前端電路,及寬頻整合頻率合成器之CMOS射頻接收機。
3-5-GHz低電壓寬頻降頻混頻器採用切換轉導之雙平衡混頻架構。量測顯示: 在3-5 GHz的頻段內最高轉換增益為10-13 dB、最低雜訊介於7.5-8.3 dB、IIP3最大值約-7.5- -5 dBm、 input P1dB為-21- -16 dBm、LO-RF isolation大於50 dB、LO-IF isolation大於52 dB、RF-IF isolation大於50 dB、核心電路直流偏壓為1.2 V/2.1 mA,消耗功率為2.5 mW。3-5-GHz 升頻混頻器的部分採用折疊式之雙平衡混頻架構。量測顯示:最大轉換增益約5.3 dB,最大值OIP3約-0.5 dBm,LO-IF isolation 約為 37 dB, 直流消耗功率約 2.7 mW,操作電壓為Vdd 1.2 V。3-5-GHz 寬頻CMOS射頻接收機前端電路包含疊接架構之低雜訊放大器及I/Q降頻混頻器,並且使用單端輸入/雙端輸出的架構,省去巴倫平衡器設計以減少訊號衰減,量測顯示: 射頻接收機前端電路在3-5-GHz的頻段內最高轉換增益為18-27 dB、最低雜訊介於6-9.2 dB、IIP3最大值約-11- -5.5 dBm、LO-RF isolation大於51 dB、LO-IF isolation大於41 dB、RF-IF isolation大於10 dB、核心電路直流偏壓為1.8 V/26.2 mA、消耗功率為47.1 mW。3-5 GHz MB-OFDM UWB 整合頻率合成器之CMOS射頻接收機包含疊接組態之低雜訊放大器、結合電荷注入式之傳統單平衡式吉勃特混頻器及直接頻率合成架構之MB-OFDM UWB Mode-1 頻率合成器,量測顯示: 射頻接收機在3-5 GHz的頻段內最高轉換增益為17-24.1 dB、最低雜訊介於5.8-22.2 dB、IIP3最大值為-18- -12 dBm、RF-IF isolation約大於30 dB、核心電路直流偏壓為1.8 V/49 mA,消耗功率為88.2 mW。
This thesis presents the design on CMOS RFICs for MB-OFDM UWB RF Receiver. The RFICs are designed with TSMC 0.18 µm 1P6M standard CMOS fabrication process supplied. The first part presents 3-5-GHz low voltage broadband down-conversion and up-conversion mixers, the second part is 3-5-GHz broadband receiver front-end., and the third part is 3-5-GHz CMOS RF receiver integrated with frequency synthesizer for UWB MB-OFDM system.
The 3-5-GHz low voltage broadband CMOS down-conversion mixer employs a folded switched transconductor topology. Measured results are: a maximum conversion gain of 10-13 dB, minimum noise figure of 7.5-8.3 dB, maximum IIP3 of -7.5- -5 dBm, LO-RF isolation of about 50 dB, and a dc power only consumption of 2.5 mW at 1.2 V power supply. The 3-5-GHz low voltage broadband CMOS up-conversion mixer employs a folded switched topology. The mixer consists of a voltage-to-current (V-I) converter and a folded Gilbert switching quad. Measured results are: a maximum conversions gain of 5.3 dB, maximum OIP3 of -0.3 dBm, LO-IF isolation of about 37 dB, and a dc power only consumption of 2.7 mW at 1.2 V power supply.
The 3-5-GHz RF receiver front-end includes a LNA with a cascade topology and a I/Q mixer employing a single-balanced Gilbert cell topology. A pMOS current source is used to set transconductor and switching stage current independently. The quadrature LO signal generated by quadrature poly phase filter. Measured results are: a maximum conversion gain of 18-27 dB, minimum noise figure of 6-9.2 dB, maximum IIP3 of -11- -5.5 dBm, LO-RF isolation of about 51 dB, and a dc power only consumption of 47.1 mW at 1.8 V power supply. The 3-5-GHz CMOS RF receiver integrated with frequency synthesizer for UWB MB-OFDM system includes a LNA, a single-balanced Gilbert cell mixer and a MB-OFDM UWB CMOS mode-1 frequency synthesizer. Measured results are: a maximum conversion gain of 17-24.1 dB, minimum noise figure of 5.8-22.4 dB, maximum IIP3 of -18- -12 dBm, RF-IF isolation of about 30 dB, and a dc power only consumption of 88.2 mW at 1.8 V power supply.
[1]http://en.wikipedia.org/wiki/Ultra-wideband
[2]S. Jose, “Design of RF CMOS power amplifier for UWB applications,” Thesis for Master of Science, Department of Electrical Engineering, Virginia Polytechnic Institute and State University, 2004.
[3]ECMA International, “Standard ECMA-368 1st Ed., High Data Rate Ultra Wideband PHY and MAC Standard,” Dec. 2005.
[4]Intel Corporation, Ultra-wideband (UWB) technology, Intel in Communications 2004.
[5]B. Razavi, T. Aytur, C. Lam, F.-R. Yang, R.-H. Yan, H.-C. Kang, C.-C. Hsu and C.-C. Lee, “A UWB CMOS transceiver,” IEEE J. Solid-State Circuits, vol.40, no. 12, pp. 2555-2562, Dec. 2005.
[6]B. Razavi, T. Aytur, F. Yang, R. Yan, H. Cang, C. Hsu, C. Lee , “A 0.13 μm CMOS UWB transceiver,” ISSCC Dig. Tech. Papers, pp. 216-217, Feb. 2005.
[7]B. Razavi, RF Microelectronics, Prentice Hall, NJ, 1998.
[8]D. J. Allstot, K. Choi, and J. Parl, Parasitic-Aware Optimization of CMOS RF Circuits, Kluwer Academic Publishers, 2003.
[9]E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk, and B. Nauta, “A CMOS switched transconductor mixer,” IEEE J. Solid-State Circuits, vol. 39, no.8, pp. 1231-1240, Aug. 2004.
[10]T.-T Hsu and C.-N. Kuo, “Low voltage 2-mW 6-10.6-GHz ultra-wideband CMOS mixer with active balun,” IEEE Circuit and Systems International Symp., pp. 5704-5707, May 2006.
[11]D. J. Allstot, X. Li, and S. Shekhar, “Design consideration for CMOS low-noise amplifiers,” in IEEE Radio Frequency Integrated Circuit Symp., pp.97-100, Jun. 2004.
[12]B. Razavi, Design of Analog CMOS Integrated Circuits, McGrawHill 2002.
[13]M. T. Terrovitis and R. G. Meyer, “Noise in current-commutating CMOS mixer,” IEEE J. Solid-State Circuit, vol.34, pp. 772-783, Jun. 1999.
[14]王鴻耀,UWB 低電壓低雜訊放大器及摺疊式與次諧波式混頻器之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
[15]G. Sapone and G. Palmisano, “A 0.25-μm CMOS low-power up-conversion mixer for 3.1-5 GHz ultra-wideband application,” Research in Microelectronics and Electronics 2006, Ph. D, pp. 457-460, 2006.
[16]P.-C. Huang, F.-C. Chang, S.-F. Chao, and H. Wang, “A miniature, folded-switching, up-conversion mixer for UWB applications using 0.18-μm CMOS process,” in IEEE Radio Frequency Integrated Circuit Symp. pp. 501-504, Jun. 2007.
[17]A. N. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and mixer,” IEEE J. Solid-State Circuits, vol. 31, no.12, pp. 1939-1944, Dec. 1996.
[18]鍾豪文,超寬頻UWB無線射頻收發機之寬頻CMOS RFICs 的研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十五年。
[19]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press, 2004.
[20]A. Bevilacqua and A .M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers,” IEEE J. of Solid-State Circuits, vol.39, no. 12, pp. 2259-2268, Dec. 2004.
[21]A. J. Scholten, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation, ” IEEE Trans. Electron Devices, vol. 50, pp.618-632, Mar. 2003.
[22]H. Samavati, H. R. Rategh, and T. -H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May 2000.
[23]L. A. MacEachern, and T. Manku, “A charge-injection method for Gilbert cell biasimg,” IEEE CCECE, vol. 1, pp. 365-368, May 1998.
[24]高曜煌,射頻鎖相迴路IC設計,滄海書局,民國九十四年十月。
[25]王銓慶,應用於MB-OFDM Mode-1 UWB 接收機之CMOS壓控振盪器與頻率合成器的研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
[26]C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system,” IEEE J. Solid-State Circuits, vol.39, no. 2, pp. 544-547, Feb. 200
[27]S. S. Mohan et al., “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346-355, Mar. 2000.
[28]D. Ham and A. Hajimiri, “Concept and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896-909, Jun. 2001.
[29]郭信宏,應用於802.11 WLAN之2 GHz及5 GHz CMOS頻率合成器RFIC之設計研究,國立成功大學電機工程研究所碩士論文,民國九十三年。
[30]A. Djemouai, and M. Sawan, “Fast-locking low-jitter integrated CMOS phase-locked loop,” IEEE International Symposium on Circuit and System, pp. 264-267, May 2001.
[31]J. Lee, “A 3-to-8-GHz fast-hopping frequency synthesizer in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 566-573, Mar. 2002.
[32]林展裕,應用於DS-UWB接收機之CMOS 4/8-GHz雙頻帶頻率合成器及射頻晶片的研究,國立成功大學電機工程研究所碩士論文,民國九十五年。
[33]C.-C. Lin, and C.-K. Wang, “Subharmonic direct frequency synthesizer for mode-1 MB-OFDM UWB system,” IEEE VLSIC Symp., pp. 38-41, Jun. 2005.
[34]K. Kivekäs, A. Pärssinen, and K. A. I. Halonen, “Characterization of IIP2 and DC-Offsets in transconductance mixer,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol. 48, no. 11, pp. 1028-1038, Nov. 2001.
[35]D. Manstretta, M. Brandolini, and F. Sevlto, “Second-order intermodulation mechanisms in CMOS downconverters,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 394-406, Mar. 2003.
[36]P. Sivonen, A. Vilander, and A. Pärssinen, “Cancellation of second-order intermodulation distortion and enhancement of IIP2 in common-source and common-emitter RF transconductors,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 52, no. 2, pp. 305-317, Feb. 2005.
[37]W. Sansen, “Distortion in elementary transistor circuits,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol. 46, no. 3, pp. 315-325, Mar. 1999.