| 研究生: |
吳宇森 Wu, Yu-Shen |
|---|---|
| 論文名稱: |
含偶氮苯三團聯共聚物於鹽類溶液中之光應答行為與結構之研究 Photoresponsive Properties and Structures of Complexes Composed of Azobenzene-Containing Triblock Copolymer and Salt in Solution |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 三團聯共聚物 、偶氮苯 、光異構化 、鹽類 |
| 外文關鍵詞: | triblock copolymer, azobenzene, photoresponse, salt |
| 相關次數: | 點閱:68 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成具有光異構化特性之偶氮苯單體,再以原子轉移自由基聚合法製備一系列含不同偶氮苯鏈段比之三團聯共聚物poly(6-[4-(4-ethoxyphenylazo)phenoxy]hexyl methacrylate)-block-poly(ethylene glycol)-block-poly(6-[4-(4-ehoxypenylazo)phenoxyl]hexyl methacrylate) (PMMAzo-b-PEG-b-PMMAzo),並研究其在溶液中之結構與光異構化行為。
PMMAzo-b-PEG-b-PMMAzo具有光異構化之行為,經由紫外光照射後,會由反式異構物轉換為順式異構物,照射可見光則會發生逆反應。利用紫外光-可見光分光光譜儀分析偶氮苯之光異構化行為,當團聯共聚物溶於中性溶劑(DMF)時,由於DMF對兩鏈段皆相容,因此團聯共聚物以random coil形式存在於溶液中;然而當選擇性溶液(H2O)加入DMF時,溶液對偶氮苯鏈段之溶解度降低,形成PEG鏈段在外而偶氮苯鏈段在內之微胞結構。從UV-Vis光譜中發現,當溶液之選擇性上升,吸收峰產生藍位移,代表偶氮苯分子之H-aggregation含量增加,其進行光異構化時結構轉換所需之空間會受到限制,因此偶氮苯分子於選擇性溶液中之光異構化速率會變慢。此外,我們也分析不同偶氮苯鏈段比之團聯共聚物於溶液中對光異構化與結構之影響,結果顯示,高偶氮苯鏈段比之團聯共聚物較容易受到溶液之選擇性影響而改變偶氮苯分子的排列型態,且光異構化速率也會隨著偶氮苯鏈段比上升而變慢。
本研究亦探討鹽類對於含偶氮苯團聯共聚物溶液中之結構影響,我們使用KCl與KSCN摻入含PMMAzo-b-PEG-b-PMMAzo之混合溶液中,當溶液的選擇性較低時,偶氮苯分子不會產生聚集,此時添加鹽類無法改變偶氮苯分子之排列型態。然而,若溶液的選擇性過高時,則會限制鹽類對於PEG鏈段的鹽析效應,此時偶氮苯分子的聚集型態也無明顯改變。在適當的混合溶液比例時,鹽類的摻入對PEG鏈段產生鹽析效應而萎縮,但微胞的尺寸則變大,我們可以推論位於微胞核的PMMAzo鏈段體積變大,因此偶氮苯分子較不會規則排列,以nonassociation形態存在的比例增加。
We synthesized a photoresponsive azobenzene monomer, which was used to synthesize azobenzene-containing triblock copolymers poly(6-[4-(4-ethoxy-phenylazo)phenoxy]hexyl methacrylate)-block-poly(ethylene glycol)-block-poly(6-[4-(4-ehoxypenylazo)phenoxyl]hexyl methacrylate) (PMMAzo-b-PEG-b-PMMAzo) through atom transfer radial polymerization. Their photoresponsive properties and structures in solutions were systematically investigated.
PMMAzo-b-PEG-b-PMMAzo exhibited the photoisomerization response. When PMMAzo-b-PEG-b-PMMAzo was irradiated by UV light, trans isomers converted to cis isomers. On the other hand, the reverse cis-to-trans photoisomerization was obtained after visible light irradiation. UV-Vis spectroscopy was carried out to examine the photoresponsive properties of PMMAzo-b-PEG-b-PMMAzo. When PMMAzo-b-PEG-b-PMMAzo was dissolved in a neutral solvent (DMF), both blocks were compatible with DMF, resulting in a random-coiled conformation. When a PEG-selective solvent (H2O) was added to DMF, the solubility of PMMAzo in the mixed solvents decreased, leading to the formation of micelles composed of PMMAzo in the core and PEG in the corona. When the solvent selectivity was increased, maximum absorbance in the UV spectra was blue-shifted, indicating an increase in the amount of H-aggregated azobenzene mesogens. The free volume of H-aggregated mesogens was limited during photoisomerization, causing a decrease in the photoisomerization rate. Furthermore, we investigated the effect of the weight fraction of the azobenzene block (fPMMAzo) on the structure and photoresponsive behavior of PMMAzo-b-PEG-b-PMMAzo. Results revealed that the copolymer with high fPMMAzo resulted in the aggregation of mesogens and the formation of micelles in selective solvents. Additionally, the photoisomerization rate increased with an increase in fPMMAzo.
The present study also investigated the effect of salt addition (KCl and KSCN) on the structure of PMMAzo-b-PEG-b-PMMAzo in solvents. When the solvent selectivity was low, mesogens were nonassociated, and the addition of salts showed little relation to the aggregation state of mesogens. However, when the solvent selectivity was too high, the salting-out effect on PEG chains was limited, resulting in little changes in the aggregation state of mesogens. In the mixed solvents with appropriate solvent selectivity, salts caused the shrinkage of PEG chains because of the salting-out effect. Conversely, the size of micelles increased. Such behavior was attributed to the expansion of PMMAzo chains in the core of micelles. As a result, the amount of nonassociated mesogens increased.
1. G. S. Hartley. The cis-form of azobenzene. Nature. 1937, 140 (3537), 281.
2. M. C. Stuart, E. J. Boekema. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid–detergent systems. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2007, 1768 (11), 2681-2689.
3. N. Sakai, T. Satoh, T. Kakuchi. Rod-like amphiphile of diblock polyisocyanate leading to cylindrical micelle and spherical vesicle in water. Macromolecules. 2014, 47 (5), 1699-1704.
4. Z. Dai, L. Piao, X. Zhang, M. Deng, X. Chen, X. Jing. Probing the micellization of diblock and triblock copolymers of poly(l-lactide) and poly(ethylene glycol) in aqueous and NaCl salt solutions. Colloid and Polymer Science. 2003, 282 (4), 343-350.
5. M. Karayianni, S. Pispas. Self-assembly of amphiphilic block copolymers in selective solvents. Fluorescence Studies of Polymer Containing Systems, Springer, 2016, 27-63.
6. F. S. Bates. Polymer-polymer phase behavior. Science. 1991, 251 (4996), 898-905.
7. M. W. Matsen, F. S. Bates. Unifying weak-and strong-segregation block copolymer theories. Macromolecules. 1996, 29 (4), 1091-1098.
8. F. S. Bates, G. H. Fredrickson. Block copolymer thermodynamics: theory and experiment. Annual review of physical chemistry. 1990, 41 (1), 525-557.
9. M. W. Matsen, R. B. Thompson. Equilibrium behavior of symmetric ABA triblock copolymer melts. The Journal of Chemical Physics. 1999, 111 (15), 7139-7146.
10. E. Mitscherlich. Ueber das stickstoffbenzid. Annalen der Physik. 1834, 108 (15), 225-227.
11. E. Merino, M. Ribagorda. Control over molecular motion using the cis–trans photoisomerization of the azo group. Beilstein journal of organic chemistry. 2012, 8, 1071-1090.
12. H. Rau. Photoisomerization of azobenzenes. Photochemistry and photophysics. 1990, 2, 119-141.
13. S. Monti, G. Orlandi, P. Palmieri. Features of the photochemically active state surfaces of azobenzene. Chemical Physics. 1982, 71 (1), 87-99.
14. H. Rau. Spectroscopic properties of organic azo compounds. Angewandte Chemie International Edition in English. 1973, 12 (3), 224-235.
15. E. V. Brown, G. R. Granneman. Cis-trans isomerism in the pyridyl analogs of azobenzene. Kinetic and molecular orbital analysis. Journal of the American Chemical Society. 1975, 97 (3), 621-627.
16. N. Tamai, H. Miyasaka. Ultrafast dynamics of photochromic systems. Chemical Reviews. 2000, 100 (5), 1875-1890.
17. J. Henzl, M. Mehlhorn, H. Gawronski, K. H. Rieder, K. Morgenstern. Reversible cis–trans isomerization of a single azobenzene molecule. Angewandte Chemie International Edition. 2006, 45 (4), 603-606.
18. G. Angelini, N. Canilho, M. l. Emo, M. Kingsley, C. Gasbarri. Role of solvent and effect of substituent on azobenzene isomerization by using room-temperature ionic liquids as reaction media. The Journal of organic chemistry. 2015, 80 (15), 7430-7434.
19. W. Freyer, D. Brete, R. Schmidt, C. Gahl, R. Carley, M. Weinelt. Switching behavior and optical absorbance of azobenzene-functionalized alkanethiols in different environments. Journal of Photochemistry and Photobiology A: Chemistry. 2009, 204, 102-109.
20. M. Sato, T. Kinoshita, A. Takizawa, Y. Tsujita. Photoinduced conformational transition of polypeptides containing azobenzenesulfonate in the side chains. Macromolecules. 1988, 21 (6), 1612-1616.
21. G. Wang, D. Yuan, T. Yuan, J. Dong, N. Feng, G. Han. A visible light responsive azobenzene-functionalized polymer: Synthesis, self-assembly, and photoresponsive properties. Journal of Polymer Science Part A: Polymer Chemistry. 2015, 53 (23), 2768-2775.
22. G. S. Hartley. The cis-form of azobenzene and the velocity of the thermal cis→ trans-conversion of azobenzene and some derivatives. Journal of the Chemical Society. 1938, 633-642.
23. V. V. Jerca, F. A. Jerca, I. Rau, A. M. Manea, D. M. Vuluga, F. Kajzar. Advances in understanding the photoresponsive behavior of azobenzenes substituted with strong electron withdrawing groups. Optical Materials. 2015, 48, 160-164.
24. Z. F. Liu, K. Morigaki, T. Enomoto, K. Hashimoto, A. Fujishima. Kinetic studies on the thermal cis-trans isomerization of an azo compound in the assembled monolayer film. The Journal of Physical Chemistry. 1992, 96 (4), 1875-1880.
25. S. Wu, L. Wang, A. Kroeger, Y. Wu, Q. Zhang, C. Bubeck. Block copolymers of PS-b-PEO co-assembled with azobenzene-containing homopolymers and their photoresponsive properties. Soft Matter. 2011, 7 (24), 11535-11545.
26. X. Tong, L. Cui, Y. Zhao. Confinement effects on photoalignment, photochemical phase transition, and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers. Macromolecules. 2004, 37 (9), 3101-3112.
27. H. Menzel, B. Weichart, A. Schmidt, S. Paul, W. Knoll, J. Stumpe, T. Fischer. Small-angle X-ray scattering and ultraviolet-visible spectroscopy studies on the structure and structural changes in Langmuir-Blodgett films of polyglutamates with azobenzene moieties tethered by alkyl spacers of different length. Langmuir. 1994, 10 (6), 1926-1933.
28. M. Shimizu, T. Hiyama. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chemistry–An Asian Journal. 2010, 5 (7), 1516-1531.
29. G. Mao, J. Wang, S. R. Clingman, C. K. Ober, J. T. Chen, E. L. Thomas. Molecular design, synthesis, and characterization of liquid crystal− coil diblock copolymers with azobenzene side groups. Macromolecules. 1997, 30 (9), 2556-2567.
30. Y. Tian, K. Watanabe, X. Kong, J. Abe, T. Iyoda. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules. 2002, 35 (9), 3739-3747.
31. J. H. Liu, Y. H. Chiu. Behaviors of self‐assembled diblock copolymer with pendant photosensitive azobenzene segments. Journal of Polymer Science Part A: Polymer Chemistry. 2010, 48 (5), 1142-1148.
32. Q. Jin, G. Liu, X. Liu, J. Ji. Photo-responsive supramolecular self-assembly and disassembly of an azobenzene-containing block copolymer. Soft Matter. 2010, 6 (21), 5589-5595.
33. P.-C. Yang, C.-Y. Li, H.-C. Chen, R.-S. Juang. Synthesis, photochemical properties, and self-assembly of diblock copolymer bearing azobenzene moieties. Journal of the Taiwan Institute of Chemical Engineers. 2015, 54, 155-164.
34. G. Grundl, M. Müller, D. Touraud, W. Kunz. Salting-out and salting-in effects of organic compounds and applications of the salting-out effect of Pentasodium phytate in different extraction processes. Journal of Molecular Liquids. 2017, 236, 368-375.
35. P. Bahadur, K. Pandya, M. Almgren, P. Li, P. Stilbs. Effect of inorganic salts on the micellar behaviour of ethylene oxide-propylene oxide block copolymers in aqueous solution. Colloid and Polymer Science. 1993, 271 (7), 657-667.
36. Y. Kadam, U. Yerramilli, A. Bahadur, P. Bahadur. Micelles from PEO–PPO–PEO block copolymers as nanocontainers for solubilization of a poorly water soluble drug hydrochlorothiazide. Colloids and Surfaces B: Biointerfaces. 2011, 83 (1), 49-57.
37. N. Jain, V. Aswal, P. Goyal, P. Bahadur. Salt induced micellization and micelle structures of'PEO/PPO/PEO block copolymers in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000, 173 (1-3), 85-94.
38. A. Schlossbauer, S. Warncke, P. M. Gramlich, J. Kecht, A. Manetto, T. Carell, T. Bein. A programmable DNA‐based molecular valve for colloidal mesoporous silica. Angewandte Chemie International Edition. 2010, 49 (28), 4734-4737.
39. Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, W. Tan. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS nano. 2012, 6 (7), 6337-6344.
40. R. Dong, B. Zhu, Y. Zhou, D. Yan, X. Zhu. Reversible photoisomerization of azobenzene-containing polymeric systems driven by visible light. Polymer Chemistry. 2013, 4 (4), 912-915.
41. M. A. Kienzler, A. Reiner, E. Trautman, S. Yoo, D. Trauner, E. Y. Isacoff. A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. Journal of the American Chemical Society. 2013, 135 (47), 17683-17686.
42. R. Weissleder. A clearer vision for in vivo imaging, Nature Publishing Group, 2001.
43. Y. Yu, M. Nakano, T. Ikeda. Photomechanics: directed bending of a polymer film by light. Nature. 2003, 425 (6954), 145.
44. M. Kondo, Y. Yu, T. Ikeda. How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid‐crystalline elastomers? Angewandte Chemie International Edition. 2006, 45 (9), 1378-1382.
45. Y. Yu, M. Nakano, T. Ikeda. Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers. Pure and applied chemistry. 2004, 76 (7-8), 1467-1477.
46. H.-K. Lee, K. Doi, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee. Light-scattering-mode optical switching and image storage in polymer/liquid crystal composite films by means of photochemical phase transition. Polymer. 2000, 41 (5), 1757-1763.
47. M. Z. Alam, A. Shibahara, T. Ogata, S. Kurihara. Synthesis of azobenzene-functionalized star polymers via RAFT and their photoresponsive properties. Polymer. 2011, 52 (17), 3696-3703.
48. X. He, H. Zhang, D. Yan, X. Wang. Synthesis of side‐chain liquid‐crystalline homopolymers and triblock copolymers with p‐methoxyazobenzene moieties and poly (ethylene glycol) as coil segments by atom transfer radical polymerization and their thermotropic phase behavior. Journal of Polymer Science Part A: Polymer Chemistry. 2003, 41 (18), 2854-2864.
49. X. Tang, L. Gao, X. Fan, Q. Zhou. ABA‐type amphiphilic triblock copolymers containing p‐ethoxy azobenzene via atom transfer radical polymerization: Synthesis, characterization, and properties. Journal of Polymer Science Part A: Polymer Chemistry. 2007, 45 (11), 2225-2234.
50. V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli. Intramolecular O–H••• O hydrogen bonds assisted by resonance. Correlation between crystallographic data and 1 H NMR chemical shifts. Journal of the Chemical Society, Perkin Transactions 2. 1997, (5), 945-952.
51. X. He, H. Zhang, X. Wang. Synthesis of side chain liquid crystal-coil diblock copolymers with p-methoxyazobenzene side groups by atom-transfer radical polymerization. Polymer journal. 2002, 34 (7), 523.
52. E. Stefanis, C. Panayiotou. Prediction of Hansen solubility parameters with a new group-contribution method. International Journal of Thermophysics. 2008, 29 (2), 568-585.
53. J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch. Polymer handbook. Vol 89, Wiley New York, 1999.
54. W. Su, K. Han, Y. Luo, Z. Wang, Y. Li, Q. Zhang. Formation and photoresponsive properties of giant microvesicles assembled from azobenzene‐containing amphiphilic diblock copolymers. Macromolecular Chemistry and Physics. 2007, 208 (9), 955-963.
55. G. Wang, X. Tong, Y. Zhao. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules. 2004, 37 (24), 8911-8917.