簡易檢索 / 詳目顯示

研究生: 林政德
Lin, Cheng-Te
論文名稱: 多重量子井應變層和矽摻雜量子位障層對氮化鎵系列發光二極體特性之影響
Characteristics of GaN-Based LEDs With MQW Prestrain Layers and Si-Doped Quantum Barriers
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 92
中文關鍵詞: 雙級多重量子井
外文關鍵詞: dual-stage MQW, Prestrain Layers
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要目的是利用MOCVD 成長雙級多重量子井結構。為了降低異質結構的應力,我們成長雙級多重量子井結構的LED,並改變該結構的週期數和量子井厚度,來觀察其光電特性及抗靜電特性。首先,我們調整 HT-QW 的週期數,亮度可提升約32%,且於20mA 的工作電流下,工作電壓由3.7V 降低至3.3V,同時也提升了抗靜電特性;接著,當增加 HT-QW 位障層的厚度,我們發現當厚度超過18.5nm 時,在人體模式下的抗靜電能力,可以有效地提升至-8KV,在此有高達61%的亮度提升,而其主要原因為使用雙級多重量子井結構來改善結晶品質所致。而在矽摻雜量子位障層的實驗中,由晶格常數的結果可以得知當Si-doping QB 週期數增加時,結構中的應力是跟隨著增加的。我們可以發現降低位障層厚度的實驗可以輕微的降低工作電壓和提升亮度,這應該是由於多重量子井結構中的穿隧效應所產生的影響。我們將探討矽摻雜量子位障層的週期數對LED 光電特性的影響。

    In this thesis, the growth of the dual-stage multiple-quantum well (MQW) LEDs has been studied by metal organic chemical vapor phase deposition (MOCVD) technique. In order to improve the strain of the heterostructure, we grew dual-stage MQW LEDs with various period and barrier thickness to enhance the electrical characteristics and ESD reliability. Firstly, we changed the period of the dual-stage MQW structure. It was found that the output power of the LEDs increased by 32%, and the forward voltage decreased from 3.7 V to 3.3 V. Besides, the ESD reliability of the LEDs also enhanced. As the barrier thickness of the dual-stage MQW structure increases, we found that the ESD reliability of the LEDs at the human body mode was up to -8KV when the barrier thickness exceeded 18.5 nm. Also, the output power of the LEDs enhanced by 61%. This enhancement can be attributed to the improved crystal quality by using dual-stage MQW structure. The Si-doped barrier layers of MQW LEDs has also been performed here. Compared with three Si-doped samples, lattice constant indicates that Si-doping in the barrier layers increases the strain of the InGaN–GaN MQW LEDs. It was found that the forward voltage decreased slightly and higher output power from the thiner barrier sample. This result attributed to the electron tunneling effect, because thinner barrier of InGaN/GaN QWs. We have systematically investigated the characteristics of InGaN/GaN multiple quantum well LED structures with different numbers of doped QBs.

    ABSTRACT ............................... - 6 - ACKNOWLEDGEMENT ........................ - 8 - CONTENTS ............................... - 9 - LIST OF TABLES ......................... - 10 - LIST OF FIGURES ........................ - 11 - CHAPTERⅠ ................................ - 14 - 1.1 THE BACKGROUND OF RESEARCH AND MOTIVATION ........................................ - 14 - REFERENCES ............................. - 17 - CHAPTER Ⅱ .............................. - 21 - 2.1 INTRODUCTION........................ - 21 - 2.2 THE MOCVD REACTOR .................. - 23 - 2.3 REAGENT CONCENTRATION MONITOR USING ULTRASONICS ........................................ - 24 - REFERENCES ............................. - 27 - CHAPTER Ⅲ .............................. - 35 - 3.1 THREADING DISLOCATION .............. - 35 - 3.2 PROPERTIES OF INGAN/GAN EPILAYERS... - 36 - 3.2.1 Indium incorporation ........................................ - 37 - 3.2.2 Phase separation ........................................ - 37 - 3.3 GROWTH OF INXGAN1-X/GANQWS ........................................ - 39 - 3.4 PROPERTIES OF QCSE EFFECT .......... - 43 - REFERENCES ............................. - 45 - CHAPTER Ⅳ.............................. - 54 - 4.1 INTRODUCTION........................ - 54 - 4.2 EXPERIMENT OF LEDS WITH VARIOUS PERIOD DUAL-STAGE MQW ........................................ - 55 - 4.3 EXPERIMENT OF LEDS WITH VARIOUS QB THICKNESS DUAL-STAGE STRUCTURE .............................. - 61 - 4.4 EXPERIMENT OF LEDS WITH SI-DOPING EFFECT OF QUANTUM-BARRIER ................................ - 64 - REFERENCES ............................. - 66 - CHAPTERⅤ ............................... - 91 - 5.1 CONCLUSION ......................... - 91 -

    [1.1] A. J. Fischer, A. A. Allerman, M. H. Crawford, K. H. A. Bogart, S. R. Lee, R. J. Kaplar, W. W. Chow, S. R. Kurtz, K. W. Fullmer, and J. J. Figiel, “Room-temperature direct current operation of 290 nm light-emitting diodes with milliwatt power levels,” Appl. Phys. Lett., vol.84, p. 3394, 2004.
    [1.2] M. Koike, N. Shibata, H. Kato, and Y. Takahashi, “Development of high efficiency GaN-based multiquantum-welllight-emitting diodes and their applications,” IEEE J. Sel. Top. Quantum Electron., vol. 8, p. 271, 2002.
    [1.3] M. A. Khan, M. S. Shur, and J. N. Kuzunia, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 ℃,” Appl. Phys. Lett., vol.66, p.1083, 1995.
    [1.4] O. Aktas, Z. F. Fan, and S. N. Mmohammand, “High temperature characteristics of AlGaN/GaN modulation doped field‐effect transistors,” Appl. Phys. Lett., vol. 69, p.3872, 1996.
    [1.5] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes,” Jpn. J. Appl. Phys., vol. 34, p. 797, 1995.
    [1.6] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamade, H. Kiyoko, and Y. Sugimoto, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Jpn. J. Appl. Phys., vol. 35, p. 74, 1996.
    [1.7] S. Nakamura and G. Fasol, The Blue Laser Diode, Springer, Berlin, 1997.
    [1.8] S. D. Lester, M. J. Ludowise, K. P. Killeen, B. H. Perez, J. N. Miller, and S. J. Rosner, “High-efficiency InGaN MQW blue and green LEDs,” J. Cryst. Growth, vol.189, p.786, 1998.
    [1.9] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, “InGaN/AlInGaN light emitting diodes,” IEEE Photon. Technol. Lett., vol. 13, p.559, 2001.
    [1.10] C. H. Kuo, S. J. Chang, Y K. Su, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE Electron. Dev. Lett., Vol.23, p.240, 2002.
    [1.11] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer ,” Appl. Phys. Lett. vol.48, p.353, 1986.
    [1.12] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE ,” J. Cryst. Growth vol.98, p.209, 1989.
    [1.13] S. Nakamura, “GaN Growth Using GaN Buffer Layer,” Jpn. J. Appl. Phys. vol.30, p.1705, 1991.
    [1.14] Y. Chen, T. Takeuchi, H. Amano, “Pit formation in GaInN quantum wells,” Appl.
    Phys. Lett. vol.72, pp.710, 1998.
    [1.15] I.H. Kim, H.S. Park, Y.J. Park, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett. vol.73, p.1634, 1998.
    [1.16] H.K. Cho, J.Y. Lee, G.M. Yang, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. vol.79, p.215, 2001.
    [1.17] K. Kusakabe, K. Ohkawa, “X-ray diffraction study of InGaN/GaN superlattice interfaces,” J. Vac. Sci. B. vol.21, p.1839, 2003.
    [1.18] T. Takeuchi, C. Wetzel, S. Yamaguchi, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect ,” Appl. Phys. Lett. vol.73, p.1691, 1998.
    [1.19] J.K. Sheu, G.C. Chi, M.J. Jou, “Enhanced output power in an InGaN-GaN multiquantum-welllight-emitting diode with an InGaN current-spreading layer,” IEEE Photon. Technol. Lett. vol.13, p.1164, 2001.
    [1.20] Y. T. Rebane, Y. G. Shreter, B. S. Yavich, V. E. Bougrov, S. I. Stepanov, and W. N. Wang, “Light emitting diode with charge asymmetric resonance tunneling,” Phys. State Solid (a), vol. 180, p. 121–126, 2000.
    [1.21] S. J. Chang, S. C. Wei, Y. K. Su, and W. C. Lai, “Nitride-based dual-stage MQW LEDs,” Journal of The Electrochemical Society, vol.154, No.10, p.871, 2007.
    [2.1] H. M. manasevit, “Epitaxial growth of III-V nitride semiconductors by metalorganic chemical vapor deposition,” J. Crystal Growth, vol.178, p. 56, 1997.
    [2.2] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett. vol. 62, p. 2390, 1993.
    [2.3] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting,” Appl. Phys. Lett., vol. 64, p.1687, 1994.
    [2.4] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor‐deposited single‐crystal-line GaN,” Appl. Phys. Lett., vol.15, p. 327, 1969.
    [2.5] H. M. Manasevit, F. Erdmann, and W. Simpson, “The use of metal organics in the preparation of semiconductor materials IV,” J. Electrochem. Soc., vol. 118, p. 1864, 1971.
    [2.6] S.K. Duan, D.C. Lu, “Quasi-thermodynamic analysis of metalorganic vapor-phase epitaxy of GaN,” Mater. Res. Soc. Symp. Proc. 468, 81, (1997).
    [2.7] S. K. Duan, D.C. Lu, “Quasi-thermodynamic analysis of MOVPE of AlGaN ,” J. Cryst. Growth, vol. 208, p.73, 2000.
    [2.8] S. Nakamura, Y. Harada, M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth,” Appl. Phys. Lett. vol.58, p.2021, 1991.
    [2.9] Thomas Swan scientific equipment CCS-MOCVD reactor system manual.
    [2.10] J.P. Stagg , J. Christer E.J. Thrush and J. Crawley, “Measurement and control of reagent concentrations in MOCVD reactor using ultrasonics ,” J. Cryst. Growth vol. 120 p.98, 1992.
    [2.11] Thomas Swan scientific equipment Epison 4_manual
    [2.12] Z. C. Feng, “Ⅲ-Nitride Semiconductor Materials”, Imperial College Press, London, 2006.
    [3.1]F Degave, P Ruterana and G Nouet, “Microstructure of GaN epitaxial films grown on (0001) sapphire by chemical beam epitaxy as related to buffer growth conditions,” J. Phys. Condens. Matter, vol.12, p.10307, 2000.
    [3.2] S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parekh, D. S. Lee, D. Lu, D. V. Christini, and E. A. Armour, “Investigation of V-defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire ,” J. Appl. Phys. vol. 94, No.3, p.1461, 2003.
    [3.3] R. Singh, D. Doppalapudi, and T. D. Moustakas, L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. vol.70, No.9, p.40, 1997.
    [3.4]S. Keller, “Growth of bulk InGaN films and quantum wells by atmospheric pressure metalorganic chemical vapour deposition,” J. Cryst. Growth vol.170, p.349, 1997.
    [3.5]Shuji Nakamura, Takashi Mukai, and Masayuki Senoh, “Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting ,” Appl. Phys. Lett. vol.64, p.1687, 1994.
    [3.6] S. Mahajan, “Two-dimensional phase separation and surface-reconstruction driven atomic ordering in mixed III–V layers ,” Materials Science and Engineering B30 p.187, 1995.
    [3.7] I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. vol. 69 Issue.18, p.28, 1996.
    [3.8] K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys. vol. 46, p.3432, 1975.
    [3.9]I-hsiu Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN ,” Appl. Phys. Lett. vol.69, No.18, p.2701, 1996.
    [3.10] Toby Strite, Wim vd Stricht thesis 1996.
    [3.11]S. Keller, B. P. Keller, D. Kapolnek, and A. C. Abare, “Growth and characterization of bulk InGaN films and quantum wells ,” Appl. Phys. Lett. vol.68, No.22, p.3147, 1996.
    [3.12]H. Amano, T. Tanaka, Y. Kunii, K. Kato, S. T. Kim, and I. Akasaki, “Room-temperature violet stimulated emission from optically pumped AIGaN/GalnN double heterostructure,” Appt. Phys. Lett. vol. 64, No.11, p.1377, 1994.
    [3.13]M. Koike, S. Yamasaki, S. Nagai, N. Koide, and S. Asami, “High-quality GaInN/GaN multiple quantum wells,” Appl. Phys. Lett. vol.68, No.10, p.1403, 1996.
    [3.14]P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lambert and R. D. Dupuis, “Properties of InGaN quantum-well heterostructures grown on sapphire by metalorganic chemical vapor deposition,” Appl. Phys. Lett. vol.71 No.11, pp.1537, 1997.
    [3.15]T. Matsuoka, N. Yoshimoto, T. Sasaki, A. Katsui, “Wide-Gap Semiconductor InGaN and InGaAlN Grown by MOVPE,” J. Electron. Mat., vol.21, p.157, 1992.
    [3.16]Jehn OU, Wei-Kuo CHEN, Heng-Ching LIN, Yung-Chung PAN and Ming-Chih LEE, “An Elucidation of Solid Incorporation of InGaN Grown by Metalorganic Vapor Phase Epitaxy ,” Jpn. J. Appl. Phys. vol. 37, p.633, 1998.
    [3.17]T Takeuchi, S Sota, M Katsuragawa, M Komori, H Takeuchi, H Amano and I Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaNInN strained quantum wells ,” Jpn. J. Appl. Phys. vol.36, p. 382, 1997.
    [4.1]S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen,W. C. Lai, J.F.Chen and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes ,” IEEE J. Sel. Top. Quan. Electron., vol.8, p. 744, 2002.
    [4.2]I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters ,” Jpn. J. Appl. Phys., vol.36, p. 5393, 1997.
    [4.3] Y. T. Rebane, Y. G. Shreter, B. S. Yavich, V. E. Bougrov, S. I. Stepanov and W. N.
    Wang, “Light emitting diode with charge asymmetric resonance tunneling,” Phys. Stat. Sol. (a), vol.180, p.121, 2000.
    [4.4] C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and
    U. H. Liaw, “High brightness green light emitting diodes with charge asymmetricresonance tunneling structure,” IEEE Electron. Dev. Lett., vol.23, p. 130, 2002.
    [4.5] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, “InGaN/GaN tunnel-injection blue light-emitting diodes,” IEEE Tran. Electron. Dev., vol.49, p.1093, 2002.
    [4.6] S. D. Lester, M. J. Ludowise, Killeen, B. H. Perez, J. N. Miller and S. J. Rosner, “High-efficiency InGaN MQW blue and green LEDs,” J. Cryst. Growth, vol.189, p.786, 1998.
    [4.7] S. J. Chang, S. C. Wei, Y. K. Su, and W. C. Lai,” Nitride-based dual-stage MQW LEDs,” Journal of The Electrochemical Society, vol.154 No.10 p.871, 2007.
    [4.8] S.Q. Zhoua, M.F. Wu, L.N. Hou, S.D. Yao, H.J. Ma, R. Ni e, Y.Z. Tong, Z.J. Yang, T.J. Yu, G.Y. Zhang, “An approach to determine the chemical composition in InGaN/GaN multiple quantum wells,” J. Cryst. Growth vol.263, p.35, 2004.
    [4.9] M.F. Wu, A. Vantomme, H. Pattyn, G. Langouche, Qinging Yang, Qiming Wang, “X-ray-diffraction study of quasipseudomorphic ErSi1. 7 layers formed by channeled ion-beam synthesis,” J. Appl. Phys. vol.80 p.5713, 1996.
    [4.10] C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and
    U. H. Liaw, “High brightness green light emitting diodes with charge asymmetricresonance tunneling structure,” IEEE Electron. Dev. Lett., vol.23, p. 130, 2002.
    [4.11] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, “InGaN/GaN tunnel-injection blue light-emitting diodes ,” IEEE Tran. Electron. Dev., vol. 49, p.1093, 2002.
    [4.12] X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” J. Appl. Phys., vol. 90, p.4191, 2001.
    [4.13] Jay M. Shah, Y.-L. Li, Th. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n ≫ 2.0) in AlGaN/GaN pn junction diodes,” J. Appl. Phys., vol.94, No.4, p.15, 2003.
    [4.14]Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol.76, p.2728, 2000.
    [4.15] T. Gessmann, Y.-L. Li, E. L. Waldron, J. W. Graff, E. F. Schubert, and J.K. Sheu, “Ohmic contacts to p-type GaN mediated by polarization fields in thin InGaN capping layers,” Appl. Phys. Lett. vol.80, p.986, 2002.
    [4.16] Di Zhu, Jiuru Xu, Ahmed N. Noemaun, Jong Kyu Kim, E. Fred Schubert,a Mary H. Crawford, and Daniel D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. vol.94, p.081113, 2009.
    [4.17]F.Bernardini, V.Fiorentini, D.Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys.Rev. B56, R10024, 1997.
    [4.18] A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum welllight-emitting diodes,” IEEE Electron Device Lett. vol.23, p.535, 2002.
    [4.19] Mayes, A. Yasan, R. McClintock, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. vol.84, p.1046, 2004.
    [4.20] P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lambert, and
    R. D. Dupuis, “Properties of InGaN quantum-well heterostructures grown on sapphire by metalorganic chemical vapor deposition,” Appl. Phys. Lett. vol.71, p.1537, 1997.
    [4.21] S. Keller, U. K. Mishra, S. P. DenBaars, and W. Seifert, “Spiral growth of InGaN nanoscale islands on GaN,” Jpn. J. Appl. Phys., vol.37, p.431, 1998.
    [4.22] S. Bidnyk, T. J. Schmidt, Y. H. Cho, G. H. Gainer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “High-temperature stimulated emission in optically pumped InGaN/GaN multiquantum wells,” Appl. Phys. Lett. vol.72, p.1623, 1998.

    無法下載圖示 校內:2014-09-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE