| 研究生: |
林育壯 Lin, Yu-Chuang |
|---|---|
| 論文名稱: |
不可靠生產系統再生產點與固定生產批量存貨模式 |
| 指導教授: |
李賢得
Lee, Shine-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 再生產點 、不可靠生產系統 、經濟生產批量 、存貨 |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
經濟生產批量之訂定為生產系統廣泛使用之存貨政策,但考量系統不可靠性對生產批量及安全存貨的影響,卻是近數年才開始探討的議題。本研究主要考量生產過程中,機器發生損壞而停止生產以進行維修,在損壞間隔時間及維修時間均為隨機的情況下,訂定最適的再製造點(安全存量)及經濟生產批量,以最小化單位時間總生產存貨相關成本。由於機器故障與維修時間的不確定性,並導致批量生產過程中之存貨水準產生變化,進而對存貨成本造成影響,並可能造成缺貨現象。
就單位時間之生產存貨相關成本而言,包含整備成本、機器修復成本、存貨持有成本及缺貨成本,而研究目標即為最小化單位時間之期望總成本。本研究利用隨機過程理論中的重新報酬過程定理,建構單位時間期望總成本表示式。由於機器的不可靠性及維修時間的不確定性,使得一個批量生產的存貨生產成本及批次生產週期均為隨機變數,故根據生產過中是否發生故障、缺貨發生狀況及生產結束時的存貨水準,而分成不同狀況來進行模式分析,建購一個生產批量內之期望總生產存貨成本與期望生產週期,進而求得單位時間期望總成本表示式。
依據本研究所建構出單位時間期望總成本表示式,依據二維搜尋演算法方法,以快速求得最適的再製造點與生產批量,使單位時間期望成本最小化。而根據資料驗證之結果,當損壞速率偏大或維修速率較慢時,則採用本模式所訂定之(再生產點,固定經濟生產批量)模式政策會較古典可靠系統之經濟批量模式表現較佳。
none
參考文獻
中文部份:
1. 董青雲,“具瑕疵品與同質重製工作兩階段生產系統之最佳經濟批量研究”,國立成功大學工業管理研究所碩士論文,民國八十七年六月。
2. 鄭家昌,“不可靠生產系統之經濟批量模式--考慮瑕疵品及重製製程”,國立成功大學工業管理研究所碩士論文,民國九十一年六月。
英文部份:
3. Abboud, N.E., 2001. A discrete-time Markov production-inventory model with machine breakdowns. Computers & Industrial Engineering 39, 95-107.
4. Arrow, K., Karlin, S., Suppes, P., 1960. The optimality of (S,s) policies in the dynamic inventory problem. Mathematical Methods in the Social Science, 196-202.
5. Bazaraa, M.S., Shatty, C.M., 1979. Nonlinear Programming:Theorey & Algorithm. John Wiley & Sons, New York.
6. Brill, P.H., Chaouch, B.A., 1995. An EOQ model with random variations in demand. Management Science 41, 927-936.
7. Chung, K.J., 2003. Approximations to production lot sizing with machine breakdowns. Computers & Operations Research 30, 1499-1507.
8. Dobson, G., 1988. Sensitivity of the EOQ model to parameter estimates. Operations Research 36, 570-574.
9. Erlenkotter D, 1989. An early classic misplaced:Ford W. Harris’s economic order quantity model of 1915. Management Science 35, 898-900.
10. Groenevelt, H., Pintelon, L., Seidmann, A., 1992a. Production lot sizing with machine breakdowns. Management Science 38, 104-123.
11. Groenevelt, H., Pintelon, L., Seidmann, A., 1992b. Production batching with machine breakdowns and safety stocks. Operations Research 40, 959-971.
12. Harris, F.W., 1913. How many parts to make at once. Factory, The Magazine of Management 10, 135-136, 152.
13. Harris, F.W., 1990. How many parts to make at once. Operations research 38, 947-950.
14. Hung, Y.F., Chang, C.B., 1999. Determining safety stocks for production planning in uncertain manufacturing. International Journal of Production Economics 58, 199-208.
15. Iyer, A.V., Schrage, L.E., 1992. Analysis of the deterministic (s,S) inventory problem. Management Science 38, 1299-1313.
16. Lee, H.L., 1992. Lot sizing to reduce capacity utilization in a production process with defective items, process corrections, and rework. Management Science 38,1314-1328.
17. Lee, S.D., Rung, J.M., 2000. Production lot sizing in failure prone two-stage serial systems. European Journal of Operational Research 123, 42-60.
18. Moini, A., Murthy, N.P., 2000. Optimal lot sizing with unreliable production system. Mathematical and Computer Modeling 31, 245-250.
19. Moinzadeh, K., Aggarwal P., 1997. Analysis of a production/inventory system subject to random disruptions. Management Science 43, 1577-1588.
20. Osteryoung, J.S., McCarty D.E., Reinhart, W.J., 1986. Use of the EOQ model for inventory analysis. Production and Inventory Management 3rd Quarter, 39-45.
21. Palar, M., 1997. Continuous-review inventory problem with random supply interruptions. European Journal of Operational Research 99, 366-385.
22. Porteus, E.L., 1986. Optimal lot sizing, process quality improvement, and setup cost reduction. Operations Research 34, 137-144.
23. Wanger, H.M., Whitin, T.M., 1958. Dynamic version of the economic lot size model. Management Science 5, 89-96.