| 研究生: |
張庭瑋 Chang, Ting-Wei |
|---|---|
| 論文名稱: |
具有以低溫氣相冷凝系統成長氧化鎵薄膜之氮化鋁鎵/氮化鎵金氧半高速電子遷移率場效電晶體的研究 Investigation of AlGaN/GaN MOS-HEMTs with Gallium oxide film grown by vapor cooling condensation system |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 氮化鋁鎵/氮化鎵 、雷射干涉微影系統 、多重通道 、光電化學法 、低溫氣相冷凝系統 |
| 外文關鍵詞: | AlGaN/GaN MOS-HEMTs, multiple channel, photoelectrochemical etching, laser interference photolithography system, gallium oxide, vapor cooling condensation system |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備多重通道氮化鋁鎵/氮化鎵高電子遷移率場效電晶體,藉由雷射干涉微影曝光搭配光電化學濕式蝕刻法完成多重通道結構的製作。透過光電化學濕式蝕刻法完成多重通道的蝕刻與閘極掘入結構以降低由反應式離子蝕刻機進行離子轟擊所造成的缺陷。
氧化鎵材料本身具有寬能隙、高介電係數、高崩潰電場與高化學穩定度等優異的特性。在低溫環境下成長的氧化鎵薄膜經驗證具有較低的缺陷足以提供高品質的表現,故本研究使用低溫氣相冷凝系統成長的氧化鎵薄膜作為元件的閘極絕緣層與表面鈍化層以提供良好的特性。
將平面式結構與500 nm多重通道結構比較可發現,在汲源極電壓(VDS)為10 V和閘源極電壓(VGS)為5 V下,平面式元件的汲源極飽和電流(IDSS)為506.7 mA/mm,而500 nm多重通道結構的汲源極飽和電流為802.1 mA/mm。平面式結構與多重通道結構之轉導特性在汲源極電壓為10 V時,最大轉移電導值(gm(max))分別為85.8 mS/mm與168.5 mS/mm,臨界電壓(Vth)從-2.8 V往正偏移至-2.2 V,次臨界擺幅(subthreshold swing, S.S.)也從380.2 mV/dec降低至175.9 mV/dec,閘極電壓為-100 V時之漏電流自7.7×10-7 A降至2.0×10-8 A。在高頻特性上,截止頻率(cutoff frequency, fT)與最大震盪頻率(maximum oscillation frequency, fMax)均有所提升,分別從5.7 GHz與11.0 GHz提升至6.0 GHz與13.2 GHz。
再進一步比較線寬為500 nm與300 nm的多重通道架構,當通道寬度持續減小,汲源極飽和電流為1000.1 mA/mm,最大轉移電導為243.3 mS/mm,臨界電壓將往正偏移至-1.1 V,次臨界擺幅則下降至113.1 mV/dec,閘極電壓為-100 V時之漏電流更下降至7.2×10-10 A,截止頻率與最大震盪頻率亦隨通道寬度遞減持續提升,分別從6.0 GHz與13.2 GHz提升至6.4 GHz與14.8 GHz。
在多重通道結構下的通道由於具有三面閘極結構,相較於平面式結構多了兩側橫向電場於二維電子氣之邊緣,故能夠有效利用通道內的環繞電場提升閘極控制能力並有較低的膝點電壓並促使臨界電壓往正偏移。當通道寬度縮減時,環繞電場效應更加明顯,更有效地控制二維電子氣密度,可進一步提升閘極控制力,並使漏電流減少,加快元件切換速度。
In this research, the AlGaN/GaN heterostructure was used to planar structure and multiple channel structure metal-oxide-semiconductor high-electron-mobility transis-tors with different channel width. The multiple channel structure was fabricated by laser interference photolithography system and photoelectrochemical etching method. It was convenient to adjust the incident angle of the laser system to define different channel width. The photoelectrochemical etching method can prevent the surface damage to the plasma.
Gallium oxide has the advantage of high dielectric constant, high breakdown field, and high thermal and chemical stability. The gate dielectric layer of the devices was gal-lium oxide (Ga2O3) thin film deposited by vapor cooling condensation system in low temperature owing to its low defect and high quality performance.
Combining the advantages mentioned above, we successfully fabricated the multi-ple channel structure of different channel width metal-oxide-semiconductor high-electron-mobility transistors. The electrical characteristics of the devices were an-alyzed in order to verify the advantages of multiple channel structured devices.
第一章
[1] H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P. R. Chalker, M. Charles, K. J. Chen, N. Chowdhury, R. Chu, C. D. Santi, M. M. D. Souza, S. Decoutere, L. D. Cioccio, B. Eckardt, T. Egawa, P. Fay, J. J. Freeds-man, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K. B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E. M. S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M. J. Uren, M. V. Hove, D. J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, and Y. Zhang, “The 2018 GaN power electronics roadmap,” J. Phys. D: Appl. Phys., vol. 51, 163001, 2018.
[2] F. M. S. Lima, A. L. A. Fonseca, and O. A. C. Nunes, “Electric field effects on electron mobility in n-AlGaAs/GaAs/AlGaAs single asymmetric quantum wells,” J. Appl. Phys., vol. 92, pp. 5296-5303, 2002.
[3] M. Golio, “RF and microwave semiconductor device handbook,” Boca Raton: CRC Press, 2003.
[4] C. Codreanu, M. Avram, E. Carbunescu, and E. Iliescu, “Comparison of 3C-SiC, 6H-SiC and 4H-SiC MESFETs performances,” Mater. Sci. Semicond. Process., vol. 3, pp. 137-142, 2000.
[5] R. J. Trew, “SiC and GaN transistors—is there one winner for microwave power applications?,” Proc. IEEE Inst. Electr. Electron. Eng., vol. 90, pp. 1032-1047, 2002.
[6] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices., vol. 41, pp. 1481-1483, 1994.
[7] D. Jin and J. A. del Alamo, “Methodology for the study of dynamic on-resistance in high-voltage GaN field-effect transistors,” IEEE Trans. on Electron Devices, vol. 60, pp. 3190-3196, 2013.
[8] S. Zhou, M. Liu, H. Xu, Y. Liu, Y. Gao, X. Ding, S. Lan, Y. Fan, C. Gui, and S. Liu, “High-efficiency GaN-based LED with patterned SiO2 current blocking layer deposited on patterned ITO,” Opt. Laser Technol., vol. 109, pp. 627-632, 2019.
[9] W. Wang, W. Xie, Z. Deng, H. Yang, M. Liao, J. Li, X. Luo, S. Sun, and D. Zhao, “Performance improvement of GaN based laser diode using Pd/Ni/Au metallization ohmic contact,” Coatings, vol. 9, 291, 2019.
[10] M. Miyoshi, M. Sakai, S. Arulkumaran, H. Ishikawa, T. Egawa, M. Tanaka, and O. Oda, “Characterization of different-Al-Content Al-GaN/GaN heterostructures and high-electron-mobility transistors grown on 100-mm-diameter sapphire substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 43, pp. 7939-7943, 2004.
[11] J. Sun, “Realization of terahertz self-mixing detectors based on AlGaN/GaN HEMT in field-effect self-mixing terahertz detectors,” Springer, Berlin, Heidelberg, 2016.
[12] L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes, R. Di-mitrov, H. Kim, O. S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W. J. Schaff, and J. R. Shealy, “Undoped AlGaN/GaN HEMTs for microwave power application,” IEEE Trans. Electron Devices., vol. 48, pp. 479-485, 2001.
[13] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and pi-ezoelectric polarization effects on the output characteristics of Al-GaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Elec-tron Devices., vol. 48, pp. 450-457, 2001.
[14] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polariza-tion-induced charge and electron mobility in AlGaN/GaN heterostruc-tures grown by plasma-assisted molecular-beam expitaxy,” J. Appl.Phys., vol. 86, pp. 4520-4526, 1999.
[15] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334-344, 2000.
[16] H. Morkoc, A. D. Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron., vol. 46, pp. 157-202, 2002.
[17] R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, and L. F. Eastman, “Two-dimensional electron gases in Ga-face and N-face Al-GaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and Metalorganic chemical vapor deposition on sapphire,” J. Appl. Phys., vol. 87, pp. 3375-3380, 2000.
[18] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, 1999.
[19] S. Mukhopadhyay, C. Neau, R. T. Cakici, A. Agarwal, C. H. Kim, and K. Roy, “Gate leakage reduction for scaled devices using transistor stacking,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, pp. 716-730, 2003.
[20] K. Ohi and T. Hashizume, “Reduction of current collapse in the multi‐mesa‐channel AlGaN/GaN HEMT,” Phys. Status Solidi C, vol. 9, pp. 898-902, 2012.
[21] G. D. Wilk, R M. Wallace, and J. M. Anthony, “High-k gate dielectrics: current status and materials properties consideration,” J. Appl. Phys., vol. 89, pp. 5243, 2001.
[22] C. Piguet, “Low-Power Electronics Design,” Boca Raton: CRC Press, 2004.
[23] S. I. Stepanov, V. I. Nikolaev, V. E. Bougrov, and A. E. Romanov, “Gallium oxide: properties and application - a review,” Rev. Adv. Mater. Sci., vol. 44, pp. 63-86, 2016.
第二章
[1] A. Laposa, J. Jakovenko, and M. Husak, “Temperature dependence of the pyroelectric behaviour in GaN/AlGaN,” The Eighth International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice, pp. 93-96, 2010.
[2] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gas induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334-344, 2000.
[3] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaar, J. S. Speck, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostruc-tures grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys., vol. 86, pp. 4520-4526, 1999.
[4] H. X. Guang, Z. D. Gang, and J. D. Sheng, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,” Chin. Phys. B, vol. 24, 067301, 2015.
[5] S. B. Lisesivdin, A. Yildiz, N. Balkan, M. Kasap, S. Ozcelik, and E. Ozbay, “Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction ex-traction method,” J. Appl. Phys., vol. 108, 013712, 2010.
[6] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, and H. Morkoc¸ “Dislocation density in GaN determined by photoelectrochemical and hot-wet etching” Appl. Phys. Lett., vol. 77, pp. 3532-3534, 2000.
[7] J. A. Grenko, C. L. Reynolds, R. Schlesser, K. Bachmann, Z. Rietmeier, Robert F. Davis, and Z. Sitar, “Selective etching of GaN from Al-GaN/GaN and AlN/GaN structures,” Mrs. Internet J. Nitride Semicond. Res., vol. 9, pp. 1-8, 2004.
[8] L. H. Huang, S. H. Yeh, C. T. Lee, H. Tang, J. Bardwell, and J. B. Webb, “AlGaN/GaN metal–oxide–semiconductor high-electron mobility tran-sistors using oxide insulator grown by photoelectrochemical oxidation method,” IEEE Electron Device Lett., vol. 29, pp. 284-286, 2008.
[9] E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch, and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photo-etch-stop layer,” Appl. Phys. Lett., vol. 68, pp. 1678-1680, 1996.
[10] L. H. Huang and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method,” J. Electrochem. Soc., vol. 154, pp. 862-866, 2007.
[11] T. Ishibashi, “Nonequilibrium electron transport in HBTs,” IEEE Trans. on Electron Device., vol. 48, pp. 2595-2605, 2001.
[12] D. Pavlidis, P. Valizadeh, S. H. Hsu, “AlGaN/GaN high electron mobility transistor (HEMT) reliability,” European Gallium Arsenide and Other Semiconductor Application Symposium GAAS 2005, pp. 265-268, 2005.
[13] M. M. Ahmed, “Schottky barrier depletion modification—a source of output conductance in submicron GaAs MESFETs,” IEEE Trans. on Electron Device., vol. 48, pp. 830-834, 2001.
[14] Y. C. Yeo, T. J. King, and Ch. Hu, “MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage consid-erations,” IEEE Trans. on Electron Device., vol. 50, pp. 1027-1035, 2003.
[15] T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang, W. C. Chien, C. C. Hu, M. J. Tsai, and Y. H. Wang, “AlGaN/GaN MOSHEMTs with liq-uid-phase-deposited TiO2 as gate dielectric,” IEEE Trans. on Electron Devices, vol. 56, pp. 2911-2915, 2009.
[16] M. Kanamura, T. Ohki, K. Imanishi, K. Makiyama, N. Okamoto, T. Kikkawa, N. Hara, and K. Joshin, “High power and high gain AlGaN/GaN MIS-HEMTs with high-k dielectric layer,” Phys. stat. sol. C, vol. 5, pp. 2037–2040, 2008.
[17] T. Kikkawa, K. Makiyama, T. Ohki, M. Kanamura, K. Imanishi, N. Hara, and K. Joshin, “High performance and high reliability AlGaN/GaN HEMTs,” Phys. Status Solidi A, vol. 206, pp. 1135–1144, 2009.
[18] F. M. S. Lima, A. L. A. Fonseca, and O. A. C. Nunes, “Electric field ef-fects on electron mobility in n-AlGaAs/GaAs/AlGaAs single asymmetric quantum wells,” J. Appl. Phys., vol. 92, pp. 5296-5303, 2002.
[19] C. Codreanu, M. Avram, E Carbunescu, and E. Iliescu, “Comparison of 3C-SiC, 6H-SiC and 4H-SiC MESFETs performances,” Mater. Sci. Semicond. Process, vol. 3, pp. 137-142, 2000.
[20] R. J. Trew, “SiC and GaN transistors—is there one winner for microwave power applications?,” Proceedings of the IEEE, vol. 90, pp. 1032-1047, 2002.
[21] T. Tamura, J. Kotani, S. Kasai, and T. Hashizume, “nearly tempera-ture-independent saturation drain current in a multi-mesa-channel Al-GaN/GaN high electron mobility transistor,” Appl. Phys. Express, vol. 1, 023001, 2008.
[22] K. Ohi, J. T. Asubar, K. Nishiguchi, and T. Hashizume, “Current stability in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Electron De-vices., vol. 60, pp. 2997-3004, 2013.
[23] Y. Eo and W. R. Eisenstadt, “High-speed VLSI interconnect modeling based on S-parameter measurements,” IEEE Trans Compon Packaging Manuf Technol, vol. 16, pp. 555-562, 1993
[24] A. Platzker and W. Struble, “Rigorous determination of the stability of linear n-node circuits from network determinants and the appropriate role of the stability factor k of their reduced two-ports,” Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Cir-cuits, Duisburg, Germany, pp. 93-107, 1994.
[25] H. C. Sánchez, F. Z. Rincón, and R. T. Torres, “Alternative determination of the intrinsic cut-off frequency applied to a degraded MOSFET,” IEEE Microw. Wirel. Compon. Lett., vol. 26, pp. 693-695, 2016.
[26] Z. Touati, Z. Hamaizia, and Z. Messai, “DC and RF characteristics of AlGaN/GaN HEMT and MOS-HEMT,” 2015 4th International Confer-ence on Electrical Engineering (ICEE), Boumerdes, pp. 1-4, 2015.
[27] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, “Low on-resistance high-breakdown normally off AlN/GaN/AlGaN DHFET on Si substrate,” IEEE Electron Device Lett., vol. 31, pp. 111-113, 2010.
[28] Y. L. Chiou, L. H. Huang, and C. T. Lee, “Photoelectrochemical function in gate-recessed AlGaN/GaN metal-oxide-semiconductor high-electron-mobility,” IEEE Electron Device Lett., vol. 31, pp. 183-185, 2010.
[29] D. Y. Jeon, S. J. Park, M. Mouis, S. Barraud, G. T. Kim, and G. Ghi-baudo, “Low-frequency noise behavior of junctionless transistors com-pared to inversion-mode transistors,” Solid-State Electron., vol. 81, pp. 101-104, 2013.
[30] Bruce Carter, “Chapter 12 - Op Amp noise theory and applications,” Op Amps for Everyone (Third Edition), pp. 163-188, 2009.
[31] A. van der Ziel, “Noise in solid state devices and circuits,” New York: John Willy & Sons, Inc., 1986.
[32] A. Alfredo and C. Galup-Montoro, “A compact model for flicker noise in MOS transistors for analog circuit design,” IEEE Trans. Electron Devices, vol. 50, pp. 1815-1818, 2003.
[33] L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f noise in MOS devices, mobility or number fluctuations,” IEEE Trans. Electron Devices, vol. 41, pp. 1936-1945, 1994.
[34] F. C. Hou, G. Bosman, and M. E. Law, “Simulation of oxide trapping noise in submicron n-channel MOSFETs,” IEEE Trans. Electron Devices, vol. 50, pp. 846-852, 2003.
[35] F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron Devices, vol. 41, pp. 1926-1935, 1994.
[36] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experi-mental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, pp. 479-531, 1981.
第三章
[1] P. E. Riley, “Plasma etching of aluminum metallizations for ultra-largescale integrated circuits,” J. Electrochem. Soc., vol. 140, pp. 1518-1522, 1993.
[2] S. K. Ghandhi, “VLSI fabrication principles,” John Wiley & Sons., p. 635, 1994.
[3] C. T. Lee, Y. J. Lin, and C. H. Lin, “Nonalloyed ohmic mechanism of TiN interfacial layer in Ti/Al contact to (NH4)2Sx-treated n-type GaN layers,” J. Appl. Phys., vol. 92, pp. 3825-3829, 2002.
[4] E. H. Rhoderick, “Metal-semiconductor contacts,” IEEE Proceedings I - Solid-State and Electron Devices, vol. 129, pp. 1-14, 1982.
[5] Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, J. W. Yang, and M. A. Khan, “Study of contact formation in AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 71, pp. 1658-1660, 1997.
[6] M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoç, “Low resistance ohmic contacts on wide band-gap GaN,” Appl. Phys. Lett., vol. 64, pp. 1003-1005, 1994.
[7] C. T. Lee and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN,” Appl. Phys. Lett., vol. 76, pp. 2364-2366, 2000.
[8] J. S. Moon, D. Wong, T. Hussain, M. Micovic, P. Deelan, M. Hu, M. Antcliffe, C. Ngo, P. Hashimoto, and L. McCray, “Submicron en-hancement-mode AlGaN/GaN HEMTs,” 60th DRC. Conference Digest Device Research Conference, Santa Barbara, CA, USA, pp. 23-24, 2002.
[9] A. Kumar, N. Gupta, and R. Chaujar, “TCAD RF performance investigation of transparent gate recessed channel MOSFET,” Microelectron. J., vol. 49, pp. 36-42, 2016.
[10] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-5275, 2001.
[11] J. Lee, B. H. Lee, H. Shin, and J. Lee, “Investigation of random telegraph noise in gate-induced drain leakage and gate edge direct tunneling currents of high-κ MOSFETs,” IEEE Trans. on Electron Device, vol. 57, pp. 913-918, 2010.
[12] C. H. Choi and C. J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology, vol. 17, pp. 5326–5333, 2006.
[13] J. D. Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam inter-ference lithography: upgrading a Lloyd’s interferometer for sin-gle-exposure hexagonal patterning,” Optics Lett., vol. 34, pp. 1783-1785, 2009.
[14] W. W. Ng, C. S. Hong, and A. Yariv, “Holographic interference lithog-raphy for integrated optics,” IEEE Trans. Electron Devices, vol. 25, pp. 1193-1200, 1978.
[15] O. Plot, A. Malaurie, and J. Machet, “Experimental and theoretical stud-ies of coating thickness distributions obtained from high rate electron beam evaporation sources,” Thin Solid Films, vol. 293, pp. 124-132, 1997.
[16] O. G. M. Saavedraa, M. E. S. Vergara, A. O. Rebollo, and R. O. Martınez, “Electrical and optical properties of Jager-nickel (II)-based molecular-material thin films prepared by the vacuum thermal evaporation technique,” J. Phys. Chem. Solids., vol. 68, pp. 1571-1582, 2007.
[17] H. S. Min, and Y. A. Douri, “Metal Chalcogenide Nanostructures: Characteristics and Synthesis,” OMICS International, 2019.
[18] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temper-ature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, 073119, 2010.
[19] X. Feng, Z. Li, W. Mi, Y. Luo, and J. Ma, “Mg-doped β-Ga2O3 films with tunable optical bandgap prepared on MgO (110) substrates by metal-organic chemical vapor deposition,” Mater. Sci. Semicond. Process, vol. 34, pp. 52-57, 2015.
[20] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamokoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,” Appl. Phys. Lett., vol. 100, 013504, 2012.
[21] R. Wakabayashi, K. Yoshimatsu, M. Hattori, and A. Ohtomo, “Epitaxial structure and electronic property of β-Ga2O3 films grown on MgO (100) substrates by pulsed-laser deposition,” Appl. Phys. Lett., vol. 111, 162101, 2017.
[22] S. Han, X. Huang, M. Fang, W. Zhao, S. Xu, D. Zhu, W. Xu, M. Fang, W. Liu, Cao, and Y. Lu, “High-performance UV detectors based on room-temperature deposited amorphous Ga2O3 thin films by RF mag-netron sputtering,” J. Mater. Chem. C, vol. 7, pp. 11834-11844, 2019.
[23] P. W. Hawkes, and J. C. H. Spence, “Handbook of microscopy,” Springer: Cham, 2019.
第四章
[1] C. H. Lin and C. T. Lee, “Ga2O3-based solar-blind deep ultraviolet light-emitting diodes,” J. Lumin., vol. 224, 117326, 2020.
[2] C. T. Lee, Y. L. Chiou, H. Y. Lee, K. J. Chang, J. C. Lin, and H. W. Chuang, “Performance improvement mechanisms of i-ZnO/(NH4)2Sx-treated AlGaN MOS diodes,” Appl. Surf. Sci., vol. 258, pp. 8590-8594, 2010.
[3] H. Y. Shih, F. C. Chu, A. Das, C. Y. Lee, M. J. Chen, and R. M. Lin, “Atomic layer deposition of gallium oxide films as gate dielectrics in AlGaN/GaN metal–oxide–semiconductor high-electron-mobility tran-sistors,” Nanoscale Res. Lett., vol. 11, 235, 2016.
[4] A. Kaya, H. Mao, J. Gao, R. V. Chopdekar, Y. Takamura, S. Chowdhury, and M. S. Islam, “An investigation of electrical and dielectric parameters of sol–gel process enabled β-Ga2O3 as a gate dielectric material,” IEEE Trans. Electron Devices, vol. 64, pp. 2047-2053, 2017.
[5] H. Jiang, C. Liu, K. W. Ng, C. W. Tang, and K. M. Lau, “High-performance AlGaN/GaN/Si power MOSHEMTs with ZrO2 gate dielectric,” IEEE Trans. Electron Devices, vol. 65, pp. 5337-5342, 2018.
[6] Y. T. Shi, W. Z. Xu, C. K. Zeng, F. F. Ren, J. D. Ye, D. Zhou, D. J. Chen, R. Zhang, Y. Zheng, and H. Lu, “High-k HfO2-based AlGaN/GaN MIS-HEMTs with Y2O3 interfacial layer for high gate controllability and interface quality,” IEEE J. Electron Devices Soc., vol. 8, pp. 15-19, 2020.
[7] S. Arulkumaran, T. Egaway, L. Selvaraj, and H. Ishikawa, “On the effects of gate-recess etching in current-collapse of different cap layers grown AlGaN/GaN high-electron-mobility-transistors,” Jpn. J. Appl. Phys., vol. 45, pp. 220-223, 2006.
[8] S. Tsuda, Y. Kawashima, K. Sonoda, A. Yoshitomi, T. Mihara, S. Narumi, M. Inoue, S. Muranaka, T. Maruyama, T. Yamashita, Y. Yamaguchi, and D. Hisamoto, “First demonstration of FinFET split-gate MONOS for high-speed and highly-reliable embedded flash in 16/14nm-node and beyond,” 2016 IEEE IEDM., San Francisco, CA, pp. 11.1.1-11.1.4, 2016.
[9] K. Ohi, J. T. Asubar, K. Nishiguchi, and T. Hashizume, “Current stability in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Elec. Device., vol. 60, pp. 2997-3004, 2013.
[10] K. S. Im, C. H. Won, J. H. Seo, I. M. Kang, S. Vodapally, Y. S. Lee, and J. H. Lee, “Novel AlGaN/GaN Omega-FinFETs with excellent device per-formances,” Solid-State Device Research Conference (ESSDERC), 46th European, 2016.
[11] J. H. Seo, Y. W. Jo, Y. J. Yoon, D. H. Son, C. H. Won, and H. Y. Jang, “Al(In)N/GaN Fin-Type HEMT with very-low leakage current and en-hanced I-V characteristic for switching applications,” IEEE Electron Device Lett., vol. 37, pp 855-858, 2016.