簡易檢索 / 詳目顯示

研究生: 陳鵬遠
Chen, Peng-Yuan
論文名稱: 兩轉動圓柱間薄膜流紋與泰勒-庫提流之熱液動性能分析
Analysis of Thermal Hydraulic Characteristics for Thin Film Ribbing and Taylor-Couette Flow between Two Rotating Cylinders
指導教授: 張錦裕
Jang, Jiin-Yun
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 116
中文關鍵詞: 轉動圓柱薄膜流紋泰勒-庫提流
外文關鍵詞: Rotating cylinders, thin film ribbing, Taylor-Couette flow
相關次數: 點閱:137下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 輥輪塗佈製程常因輥輪轉速、輥輪間距及塗料性質的差異而在基材表面形成不均勻的流紋現象,且在一般的塗料中皆含有非牛頓流體的特性,因此要研究如何降低輥輪塗佈的流紋現象必須針對塗料的物理性質及非牛頓流體特性、輥輪轉速比及輥輪間距加以探討。泰勒-庫提流(Taylor-Couette flow)廣泛存在於同軸心圓柱旋轉之電機機械設備內,如車用的旋轉葉片接合器(rotary blade coupling),則會因散熱不良導致熱應力過高而損毀,因此提升同心圓柱旋轉系統中泰勒-庫提流的熱傳能力,就成為改善此類設備的重要課題。本文主要的目的即是以實驗和數值模擬的方式分析兩轉動圓柱間薄膜流紋的現象,以及探討不同流體性質與操作參數對泰勒-庫提流中的熱液動特性的影響。
    在輥輪塗佈中塗料的非牛頓特性是以冪次定理來模擬,冪次項n值的模擬範圍介於0.8 ~ 1.2之間。不同的輥輪間距與轉速比對膜厚與流紋的影響也在本文中詳細討論,輥輪間距與半徑比H0/R的範圍介於3.33×10-4 ~ 6.67×10-4,輥輪轉速比則在1 ~ 4,實驗與數值模擬的誤差在5 ~ 12%之間。由研究結果顯示塗料的膜厚比與非牛頓冪次項、輥輪轉速比及輥輪間距有關:在順輥塗佈時塗料的塗覆輥膜厚(coating film thickness)對進入喉部膜厚(inlet film thickness)比t3/t1與非牛頓冪次項成反比,與輥輪間距對半徑比H0/R和塗覆輥(applicator roll)對帶漆輥(pick-up roll)轉速比V2/V1成正比;而在逆輥塗佈時支撐輥轉印膜厚(transferred film thickness)對進入喉部膜厚(inlet film thickness)比t4/t3則與非牛頓冪次項和輥輪間距對平均半徑比H0/Rm成正比關係,與支撐輥(panel roll)對塗覆輥轉速比V3/V2成反比。流場的壓力峰值會隨著輥輪轉速比和非牛頓冪次項的提高而增加,隨輥輪間距的增加而減少。流紋波長對輥輪間距比λ / H0則與非牛頓冪次項和毛細數(Capillary number)成反比,和輥輪間距成正比。由此可得知當流體的非牛頓冪次項n值和系統的毛細數值愈大,以及輥輪間距愈小時,其所產生的不穩定流紋數量會隨之增加。
    至於泰勒-庫提流(Taylor-Couette flow)中兩同心圓柱間的熱液動性能則是以數值方法進行分析,其中包含不同圓柱半徑比(η = 0.6, 0.75, 0.9)、細長比(A = 1, 5, 10, 15, 20)、普蘭特數(Pr = 1, 7, 20, 50, 100)、非牛頓冪次項(n = 0.8~1.2) 和旋轉雷諾數(Reω= 390~3900)對平均紐賽數的影響。由結果顯示平均紐賽數會隨著旋轉雷諾數Reω、普蘭特數Pr以及半徑比η的增加而提昇,而隨著非牛頓冪次項的增加而降低。對細長比而言在細長比A < 10時才有較明顯的影響,當細長比A > 10其對平均紐賽數的影響可忽略。

    The ribbing phenomenon and non-uniform film thickness occurred when increasing roll speed and shrinking roll gap in roll coating process, and non-Newtonian property in coating fluid also affected the coating field. It is necessary to analysis the non-Newtonian property of coating fluid, roll speed ratio and roll gap in order to ligten the unstable ribbing. Taylor-Couette flow exists in co-axial rotating electrical equipment such as rotary blade coupling in vehical, and is burned down for high temperature. It is important to improve the thermal behavior in Taylor-Couette flow. In this paper the thermal hydraulic characteristics for thin film ribbing and Taylor-Couette flow between two rotating cylinders were investigated experimentally and numerically.
    Non-Newtonian behavior of the roll coating fluid was accounted by using power-law model with power index, n, ranging from 0.8 to 1.2. Effect of roll speed ratio of applicator roll to pick-up roll and gap distance on the coating film thickness and ribbing wavelength were also investigated. The roll gap to radius ratio was within 3.33×10-4 - 6.67×10-4, and the roll speed ratio within 1 - 4. Numerical results were in good agreement with those of experimental data within 5-12%. Results indicated that the film thickness ratios were functions of power-law index, roll speed ratio and ratio of gap distance to roll radius. In forward roll coating process, the coating film thickness to inlet film thickness ratio was reduced as increasing power-law index, and increased as increasing gap to radius ratio and roll speed ratio. In reverse roll coating process, transferred film thickness to inlet film thickness ratio was increased as increasing power-law index and gap to average radius ratio, and decreased as increasing roll speed ratio. The peak pressure in coating flow field was increased as increasing roll speed ratio and power-law index, and reduced as increasing roll gap. The ribbing wavelength-to-gap ratio was reduced as increasing power-law index and capillary number, and enlarged as increasing roll gap. It was shown that the unstable ribbing number was increased as increasing power-law index, capillary number and reducing roll gap.
    The thermal-hydraulic characteristics of Taylor-Couette flow in the gap between two horizontal concentric cylinders were investigated. Various radius ratio (η = 0.6, 0.75, 0.9), aspect ratio (A = 1, 5, 10, 15, 20), Prandtl number (Pr = 1, 7, 20, 50, 100), power-law index (n = 0.8-1.2) and rotating Reynolds number (Reω= 390-3900) were evaluated in detail to discuss the effects on Nusselt number. The results indicated that the average Nusselt number of Taylor-Couette flow was increased as increasing rotating Reynolds number, Prandtl number and radius ratio, and decreased as increasing power-law index. The average Nusselt number was affected significantly by aspect ratio A when A≦10, but slightly affected as 10≦A≦20.

    中文摘要 I 英文摘要 III 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XIII 第一章 前言 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 研究目的及方法 10 第二章 理論分析 17 2.1 輥輪塗佈理論分析 17 2.2 泰勒-庫提流理論分析 22 第三章 數值方法 34 3.1 解題方法 34 3.2 格點建立與測試 41 第四章 實驗設備及方法 49 4.1實驗設備 49 4.2塗料性質黏度測試 51 4.3輥輪塗佈實驗規劃與步驟 51 第五章 結果與討論 57 5.1 輥輪塗佈結果與討論 57 5.2 泰勒-庫提流結果與討論 66 第六章 結論與建議 106 6.1 結論 106 6.2 未來研究與建議 109 參考文獻 111

    1. Pearson, J. R. A., The Instability of Uniform Viscous Flow under Rollers and Spreaders, J. Fluid Mechanics, Vol.7, pp.481-500, 1959.
    2. Taylor, G. I., Cavitation of a Viscous Fluid in a Narrow Passage, J. Fluid Mech., Vol.16, pp.595-619, 1963.
    3. Savage, M. D., Mathematical Models for Coating Processes, J. Fluid Mech, Vol.117, pp.443-455, 1982.
    4. Coyle, D. J., Macosko, C. W. and Scriven, L. E., Film-splitting flows in forward roll coating”, J. Fluid Mechanics, Vol.171, pp.183-207, 1986.
    5. Pitts, E. and Greiller, J., The Flow of Thin Liquid Films Between Rollers, J. Fluid Mechanics, Vol.11, pp.33-50, 1961.
    6. Mill, C. C. and South, G. R., Formation of Ribs on Rotating Rollers, J. Fluid Mechanics, Vol.28, pp.523-529, 1967.
    7. Coyle, D. J., Macosko, C. W. and Scriven, L. E., Stability of Symmetric Film Splitting Between Counter-rotating Cylinders, J. Fluid Mechanics, Vol.216, pp.437-458, 1990.
    8. Hasegawa, T. and Sorimachi, K., Wavelength and Depth of Ribbing in Roll Coating and Its Elimination, AICHE J., Vol.39, No.6, pp.935-945, 1993.
    9. Carvalho, M. S. and Scriven, L. E., Three Dimensional Stability Analysis of Free Surface Flows: Application to Forward Deformable Roll Coating, Journal of Computational Physics, Vol.151, pp.534-562, 1999.
    10. Chien, C. H. and Jang, J. Y., Numerical and experimental studies of thin liquid film flow between two forward-rollers, Int. J. Mechanical Science, Vol.21, pp.1892-1900, 2007.
    11. Greener, Y. and Middleman, S., A Theory of Roll Coating of Viscous and Viscoelastic Fluids, Polymer Engineering and Science, Vol. 15, No.1, pp.1-10, 1975.
    12. Savage, M. D., Variable Speed Coating with Purely Viscous non- Newtonian Fluids, J. Applied Mathematics and Physics, Vol. 34, pp. 358-369, 1983.
    13. Coyle, D. J., Macosko, C. W. and Scriven, L. E., Film-Splitting Flows of Shear-thinning Liquids in Forward Roll Coating, AIChE Journal, Vol.33, No.5, pp.741-746, 1978.
    14. Sofou, S. and Mitsoulis, E., Roll-over-Coating of Pseudoplastic and Viscoplastic Sheets Using the Lubrication Approximation, Journal of Plastic Film and Sheeting, Vol.21, pp.307-333, 2005.
    15. Han, S. K., Shin, M. D., Park, H. Y., Jung, H. W. and Hyun, J. C., Effect of Viscositicity on Dynamics and Stability in Roll Coating, Eur. Phys. J. Special Topic 2009, Vol.166, pp.107-110, 2009.
    16. Booth, G. L., Coating Equipment and Processes, New York: Lockwood Publishing Company, 1970.
    17. Higgins, D. G., Coating methods-survey, Encyclopedia of Polymer Science and Technology, Vol.3, pp.765-807, 1965.
    18. Ho, W. S. and Holland, F. M., Between roll metering coating technique - a theoretical and experiment study, TAPPI Journal, Vol.61, pp.53-56, 1978.
    19. Greener, J. and Middleman, S., Reverse roll coating of viscous and viscoelastic liquids, Industrial and Engineering Chemical Fundamentals, Vol.20, pp.63-66, 1981.
    20. Coyle, D. J., Macosko, C. W. and Scriven, L. E., The fluid dynamics of reverse roll coating, AIChE Journal, Vol.36, pp.161-174, 1990.
    21. Coyle, D. J., Macosko, C. W. and Scriven, L. E., A simple model of reverse rolls Coating, Ind. Eng. Chem. Res., Vol.29, pp.1416-1419, 1990.
    22. Hao, Y. and Haber, S., Reverse roll coating flow, Int. J. Numerical Methods in Fluids, Vol.30, pp.635-652, 1999.
    23. Chandio, M. S. and Webster, M. F., Numerical simulation for reverse roller coating with free surfaces, ECCOMAS Computational Fluid Dynamics Conference, UK : Swansea, Vol.4, No.7, September, pp.1-11, 2001
    24. Chandio, M. S. and Webster, M. F., Numerical simulation for viscous free-surface flows for reverse roller-coating, Int. J. Numerical Methods for Heat and Fluid Flow, Vol.12, No.4 , pp.434-457, 2002.
    25. Coyle, D. J., Macosko, C. W. and Scriven, L. E., Reverse roll coating of non-Newtonian liquids, Journal of Rheology, Vol.34, No.5, pp.615-636, 1990.
    26. Tiu, C., Wang, L. and Liu, T. J., Non-Newtonian effects on pre-metered reverse roll coating, J. Non-Newtonian Fluid Mech., Vol.87, pp.247-261, 1999.
    27. Lee, Y. N. and Minkowyez, W. J., Heat transfer characteristics of the annulus of two-coaxial cylinders with one cylinder rotating, Int. J. Heat Mass Transfer, Vol.32, pp.711-722, 1989.
    28. Singer, H. P., Techniques of low pressure chemical vapor deposition, Semiconductor International, Denver, CO, May, pp.72-77, 1984.
    29. Yeh, J. P., Tzeng, S. C. and Tseng, H. C., Temperature distributions in rotary-blade-coupling of a 4WD vehicle with longitudinal ribbed turbulators, Applied Energy, Vol.80, pp.155-167, 2005.
    30. Huang, K. D., Tzeng, S. C., Ma, W. P. and Wu, T. S., Thermal behaviors and lubrication properties in rotary blade coupling of sports utility vehicles, JSME Int. J. Ser. B, Vol.49, No.3, pp.820-830, 2006.
    31. Taylor, G. I., Stability of a viscous liquid contained between two rotating cylinders, Philos. Trans. Ser. A 223, pp.289-343, 1923.
    32. Benjamin, T. B., Bifurcation phenomena in steady flows of a viscous fluid. Part A, Proc. R. Soc. London, Ser. A 359, pp.1-26, 1978.
    33. Benjamin, T. B., Bifurcation phenomena in steady flows of a viscous fluid. Part B, Proc. R. Soc. London, Ser. A 359, pp.27-43, 1978.
    34. Mullin, T., Mutations of steady cellular flows in the Taylor experiment, J. Fluid Mech., Vol.121, pp.207-218,1982.
    35. Bielek, C. A. and Koschmieder, E. L., Taylor vortices in short fluid columns with large radius ratio, Phys. Fluids, Vol.2, No.9, pp.1557-1563, 1990.
    36. Cliffe, K. A., Kobine, J. J. and Mullin, T., The role of anomalous modes in Taylor Couette flow, Proc. R. Soc. London, Ser. A 439, pp.341-357, 1992.
    37. Langerberg, J. and Pifister, G., The effect of physical boundaries on oscillatory bifurcation in counterrotating Taylor-Couette flow, Phys. Fluids, Vol.16, No.8, pp.2757-2762, 2004.
    38. Youd, A. J. and Barenghi, C. F., Reversing and nonreversing modulated Taylor- Couette flow at finite aspect ratio, Phys. Rev. E 72, 056312, 2005.
    39. Meyer, K. A., Time-dependent numerical study of Taylor vortex flow, Phys. Fluids, Vol.10, No.9, pp.1874-1879, 1967.
    40. Moser, R. D., Moin, P. and Leonard, A., A spectral numerical method for the Navier-Stokes equations with applications to Taylor- Couette flow, J. Comput. Phys., Vol.52, pp.524-544, 1983.
    41. Ali, M. and Weidman, P. D., On the stability of circular Couette flow with radial heating, J. Fluid Mech., Vol.220, pp.53-84, 1990.
    42. Chen, J. C. and Kuo, J. Y., The linear stability of steady circular Couette flow with a small radial temperature gradient, Phys. Fluids, Vol.2, pp.1585-1591, 1990.
    43. Kedia, R. M., Hunt, L. and Colonius, T., Numerical simulations of heat transfer in Taylor-Couette flow, J. Heat transfer, Vol.120, pp.65-71, 1998.
    44. Tzeng, S. C., Heat transfer in a small gap between co-axial rotating cylinders, Int. Comm. Heat Mass Transfer, Vol.33, pp.737-743, 2006.
    45. Jeng, T. M., Tzeng, S. C. and Lin, C. H., Heat transfer enhancement of Taylor-Couette-Poiseuille flow in an annulus by mounting longitudinal ribs on the rotating inner cylinder, Int. J. Heat Mass Transfer, Vol.50, pp.381-390, 2007.
    46. Noui-Mehidi, M. N., Ohmura, N., Nishiyama, K. and Wu, J., Improving heat transfer with Taylor vortices in a compact modified Couette-Taylor apparatus, J. Chem. Eng. of Japan, Vol.40, No.11, pp.951-956, 2007.
    47. CFD-ACE(U),CFD Research Corporation, Alabama, USA, 2003.
    48. Wilkinson, W. L., Non-Newtonian Fluids – Fluids Mechanics, Mixing and Heat Transfer, New York, Pergamon, 1960.
    49. Hirt, C. W. and Nichols, B. D., Volume of fluid method for the dynamics of free boundary, J. Comput. Phys., Vol.39, pp.210-25, 1981.
    50. Patankar S. V., Numerical heat transfer and fluid flow, Hemisphere publishing corpotation, 1978.
    51. Van Doormaal, J. P. and Raithby, F. D., Enhancements of the SIMPLE Method for Predicting Incompressible fluid flows, Journal of Heat Transfer, Vol.7, pp.147-163, 1984.
    52. Ascanio, G. and Ruiz, G., Measurement of pressures distribution in a deformable nip of counter-rotating rolls”, Measurement Science and Technology, Vol.17, pp.2430-2439, 2006.
    53. Gaskell, P. H., Innes, G. E. and Savage, M. D., An experimental investigation of meniscus roll coating, J. Fluid Mech., Vol.355, pp.17-44, 1998.

    下載圖示 校內:2012-08-30公開
    校外:2013-08-30公開
    QR CODE